[1] |
OLUTONA G O, FAKUNLE I A, ADEGBOLA R A. Detection of organochlorine pesticides residue and trace metals in vegetables obtained from Iwo market, Iwo, Nigeria[J]. International Journal of Environmental Science and Technology, 2021, 19(5): 4201-4208.
|
[2] |
INTISAR A, RAMZAN A, SAWAIRA T, et al. Occurrence, toxic effects, and mitigation of pesticides as emerging environmental pollutants using robust nanomaterials – A review[J]. Chemosphere, 2022, 293: 133538.1-133538.15.
|
[3] |
SALIMI F, ASADIKARAM G, ASHRAFI M R, et al. Organochlorine pesticides and epigenetic alterations in thyroid tumors[J]. Frontiers in Endocrinology, 2023, 14.
|
[4] |
SIDDIQUE S, CHAUDHRY M N, AHMAD S R, et al. Comprehensive GIS based risk surveillance of organochlorine pesticides (OCPs) in edible fish species of River Chenab, Pakistan[J]. Science of The Total Environment, 2023, 871: 162084. doi: 10.1016/j.scitotenv.2023.162084
|
[5] |
SASAKI N, JONES L, MORSE G, et al. Mixture effects of polychlorinated biphenyls (PCBs) and three organochlorine pesticides on cognitive function in Mohawk adults at Akwesasne[J]. International Journal of Environmental Research and Public Health, 2023, 20(2): 1148. doi: 10.3390/ijerph20021148
|
[6] |
余悦, 邢新丽, 程铖, 等. 桂林会仙岩溶湿地水体与沉积物中有机氯农药污染特征[J]. 环境科学, 2023, 44(3): 1387-1396.
|
[7] |
SHEN B B, WU J L, ZHAO Z H. Organochlorine pesticides and polycyclic aromatic hydrocarbons in water and sediment of the Bosten Lake, Northwest China[J]. Journal of Arid Land, 2017, 9(2): 287-298. doi: 10.1007/s40333-017-0008-4
|
[8] |
蔡一枝, 李发明, 刘凌峰, 等. 汕尾近岸水体和沉积物中有机氯农药的残留特征及生态风险评价[J]. 海洋环境科学, 2022, 41(3): 387-394.
|
[9] |
CAO F M, LI Z Z, HE Q, et al. Occurrence, spatial distribution, source, and ecological risk assessment of organochlorine pesticides in Dongting Lake, China[J]. Environmental Science and Pollution Research, 2021, 28(24): 30841-30857. doi: 10.1007/s11356-021-12743-x
|
[10] |
YANG Y Y, LIU M X, YUN X Y, et al. Profiles and risk assessment of organochlorine pesticides in Three Gorges Reservoir, China[J]. Clean-soil Air Water, 2017, 45(2): 1600823. doi: 10.1002/clen.201600823
|
[11] |
金德周, 张兆年, 宋环宇, 等. 长江三峡库区库尾区域25种有机氯残留污染研究[J]. 环境影响评价, 2023, 45(3): 108-114.
|
[12] |
余进, 武林军, 吉鹏, 等. 中国黄河口表层水中有机氯农药的分析与评价[J]. 蚌埠学院学报, 2022, 11(5): 19-24.
|
[13] |
LI H X, JIANG W W, PAN Y L, et al. Occurrence and partition of organochlorine pesticides (OCPs) in water, sediment, and organisms from the eastern sea area of Shandong Peninsula, Yellow Sea, China[J]. Marine Pollution Bulletin, 2021, 162: 111906. doi: 10.1016/j.marpolbul.2020.111906
|
[14] |
林明兰, 林田, 徐良, 等. 长江水体多氯联苯和有机氯农药污染特征与通量研究[J]. 环境科学研究, 2022, 35(9): 2100-2109.
|
[15] |
张坤锋, 付青, 涂响, 等. 武汉典型饮用水水源中典型POPs污染特征与健康风险评估[J]. 环境科学, 2021, 42(12): 5836-5847.
|
[16] |
龚雄虎, 丁琪琪, 金苗, 等. 升金湖水体优先污染物筛选与风险评价[J]. 环境科学, 2021, 42(10): 4727-4738.
|
[17] |
CHEN Y P, ZHAO Y, ZHAO M M, et al. Potential health risk assessment of HFRs, PCBs, and OCPs in the Yellow River basin[J]. Environmental Pollution, 2021, 275: 116648. doi: 10.1016/j.envpol.2021.116648
|
[18] |
XUE N D, ZHANG D R, XU X B. Organochlorinated pesticide multiresidues in surface sediments from Beijing Guanting reservoir[J]. Water Research, 2006, 40(2): 183-194. doi: 10.1016/j.watres.2005.07.044
|
[19] |
MUNOZ M, PEDRO Z M D, CASAS J A, et al. Assessment of the generation of chlorinated byproducts upon Fenton-like oxidation of chlorophenols at different conditions[J]. Journal of Hazardous Materials, 2011, 190(1-3): 993-1000. doi: 10.1016/j.jhazmat.2011.04.038
|
[20] |
XIA C H, LIU Y, ZHOU S W, et al. The Pd-catalyzed hydrodechlorination of chlorophenols in aqueous solutions under mild conditions: A promising approach to practical use in wastewater[J]. Journal of Hazardous Materials, 2009, 169(1-3): 1029-1033. doi: 10.1016/j.jhazmat.2009.04.043
|
[21] |
JAYARAJ R, MEGHA P, SREEDEV P. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment[J]. Interdisciplinary Toxicology, 2016, 9(3-4): 90-100. doi: 10.1515/intox-2016-0012
|
[22] |
左剑恶, 肖晶华, 陈莉莉. 氯代有机污染物在厌氧条件下还原脱氯的研究进展[J]. 环境污染治理技术与设备, 2003, 4(6): 43-48.
|
[23] |
WANG S J, WANG X, POON K, et al. Removal and reductive dechlorination of triclosan by chlorella pyrenoidosa[J]. Chemosphere, 2013, 92(11): 1498-1505. doi: 10.1016/j.chemosphere.2013.03.067
|
[24] |
刘静萱, 邹卫华. 沙柳基活性炭对2, 4-二氯苯酚的吸附研究[J]. 化工新型材料, 2017, 45(6): 204-206,213.
|
[25] |
ESTRADA A L, LI Y Y, WANG A M. Biodegradability enhancement of wastewater containing cefalexin by means of the electro-Fenton oxidation process[J]. Journal of Hazardous Materials, 2012, 227-228(Aug.15): 41-48.
|
[26] |
MA Y Y, WANG Y Y, LV X F, et al. Insight into the mode of action of Pd-doped zero-valent iron nanoparticles @graphene (Pd/FePs@G) toward carbon tetrachloride dechlorination reaction in aqueous solution[J]. Applied Catalysis A, General, 2018, 560: 84-93. doi: 10.1016/j.apcata.2018.05.002
|
[27] |
朱海洋, 李一兵, 冒冉, 等. 三维Pd/OMC粒子电极体系电催化泛影酸盐还原脱碘研究[J]. 环境科学学报, 2020, 40(1): 138-146.
|
[28] |
YOU S J, GONG X B, WANG W, et al. Enhanced cathodic oxygen reduction and power production of microbial fuel cell based on noble-metal-free electrocatalyst derived from metal-organic frameworks[J]. Advanced Energy Materials, 2016, 6(1).
|
[29] |
乔佳妮. 硫酸盐还原作用对氯代有机物还原脱氯影响的研究进展[J]. 广东化工, 2018, 45(22): 81-82,75.
|
[30] |
DOLFING J, HARRISON B K. Gibbs free energy of formation of halogenated aromatic compounds and their potential role as electron acceptors in anaerobic environments[J]. Environmental Science & Technology, 1992, 26(11): 2213-2218.
|
[31] |
MAO R, LAN H C, YAN L, et al. Enhanced indirect atomic H* reduction at a hybrid Pd/graphene cathode for electrochemical dechlorination under low negative potentials[J]. Environmental Science: Nano, 2018, 5(10): 2282-2292. doi: 10.1039/C8EN00727F
|
[32] |
LI J J, WANG H, QI Z Y, et al. Kinetics and mechanisms of electrocatalytic hydrodechlorination of diclofenac on Pd-Ni/PPy-rGO/Ni electrodes[J]. Applied Catalysis B: Environmental, 2020, 268: 118696. doi: 10.1016/j.apcatb.2020.118696
|
[33] |
SUN Z R, SHEN H T, WEI X F, et al. Electrocatalytic hydrogenolysis of chlorophenols in aqueous solution on Pd58Ni42 cathode modified with PPy and SDBS[J]. Chemical Engineering Journal, 2014, 241: 433-442. doi: 10.1016/j.cej.2013.10.066
|
[34] |
SUN Z R, WANG K, WEI X F, et al. Electrocatalytic hydrodehalogenation of 2, 4-dichlorophenol in aqueous solution on palladium–nickel bimetallic electrode synthesized with surfactant assistance[J]. International Journal of Hydrogen Energy, 2012, 37(23): 17862-17869. doi: 10.1016/j.ijhydene.2012.09.109
|
[35] |
MA X Y, SUN Z R, HU X. Electrocatalytic dechlorination of chlorophenols on palladium/graphene-Nafion/titanium mesh electrode[J]. Journal of Water Process Engineering, 2018, 26: 72-82. doi: 10.1016/j.jwpe.2018.09.008
|
[36] |
LI J J, LIU H L, CHENG X W, et al. Preparation and characterization of palladium/polypyrrole/foam nickel electrode for electrocatalytic hydrodechlorination[J]. Chemical Engineering Journal, 2013, 225: 489-498. doi: 10.1016/j.cej.2013.01.049
|
[37] |
ARELLANO GONZáLEZ M A, TEXIER A C, LARTUNDO ROJAS L, et al. Electrochemical dechlorination of 2-chlorophenol on Pd/Ti, Ni/Ti and Pd-Ni alloy/Ti electrodes[J]. Journal of The Electrochemical Society, 2015, 162(10): E223-E230. doi: 10.1149/2.0021510jes
|
[38] |
HE Z Q, TONG Y W, NI S L. Electrochemically reductive dechlorination of 3, 6-dichloropicolinic acid on a palladium/nitrogen-doped carbon/nickel foam electrode[J]. Electrochimica Acta, 2018, 292: 685-696. doi: 10.1016/j.electacta.2018.09.188
|
[39] |
HE Z Q, JIAN Q W, TANG J T, et al. Improvement of electrochemical reductive dechlorination of 2, 4-dichlorophenoxyacetic acid using palladium catalysts prepared by a pulsed electrodeposition method[J]. Electrochimica Acta, 2016, 222(Pt.1): 488-498.
|
[40] |
LOU Y Y, HAPIOT P, FLONER D, et al. Efficient dechlorination of α-halocarbonyl and α-haloallyl pollutants by electroreduction on bismuth[J]. Environmental Science & Technology, 2020, 54(1): 559-567.
|
[41] |
FONTMORIN J M, HE W Y, FLONER D, et al. Reductive dehalogenation of 1, 3-dichloropropane by a [Ni(tetramethylcyclam)]Br2-Nafion® modified electrode[J]. Electrochimica Acta, 2014, 137: 511-517. doi: 10.1016/j.electacta.2014.06.043
|
[42] |
ZHOU J S, LOU Z M, YANG K L, et al. Electrocatalytic dechlorination of 2, 4-dichlorobenzoic acid using different carbon-supported palladium moveable catalysts: Adsorption and dechlorination activity[J]. Applied Catalysis B: Environmental, 2019, 244: 215-224. doi: 10.1016/j.apcatb.2018.11.052
|
[43] |
LIU R, ZHAO H C, ZHAO X Y, et al. Defect sites in ultrathin Pd nanowires facilitate the highly efficient electrochemical hydrodechlorination of pollutants by H*ads[J]. Environmental Science & Technology, 2018, 52(17): 9992-10002.
|
[44] |
李君敬, 种雨彤, 唐李文, 等. 电催化还原脱氯法处理氯代有机废水研究进展[J]. 给水排水, 2021, 47(12): 158-167.
|
[45] |
王春媛, 刘舒玥, 梁平娟. 三维自支撑电极电催化加氢脱氯的研究进展[J]. 电脑采购, 2021(36): 38-40.
|
[46] |
HE W Y, YANG S Y, Y K J, et al. Synergistic effect of PDA and PVP on nanosized Pd doped graphite felt/Ni electrode for promoting the electrocatalytic degradation of 2,4-dichlorophenoxyacetic acid[J]. Chemical Engineering Journal, 2024, 487: 150460.
|
[47] |
HE W Y, FONTMORIN J M, SOUTREL I, et al. Reductive dechlorination of a chloroacetanilide herbicide in water by a Co complex-supported catalyst[J]. Molecular Catalysis, 2017, 432: 8-14. doi: 10.1016/j.mcat.2017.01.021
|
[48] |
HE Z Q, SUN J J, WEI J, et al. Effect of silver or copper middle layer on the performance of palladium modified nickel foam electrodes in the 2-chlorobiphenyl dechlorination[J]. Journal of Hazardous Materials, 2013, 250-251(Apr.15): 181-189.
|
[49] |
WANG J, CUI C Y, XIN Y J, et al. High-performance electrocatalytic hydrodechlorination of pentachlorophenol by amorphous Ru-loaded polypyrrole/foam nickel electrode[J]. Electrochimica Acta, 2019, 296: 874-881. doi: 10.1016/j.electacta.2018.11.115
|
[50] |
万晓阳. 高性能电催化加氢脱卤电极的制备及应用[D]. 河南: 河南科技大学, 2019.
|
[51] |
TSYGANOK A I, OTSUKA K. Selective dechlorination of chlorinated phenoxy herbicides in aqueous medium by electrocatalytic reduction over palladium-loaded carbon felt[J]. Applied Catalysis B: Environmental, 1999, 22(1): 15-26. doi: 10.1016/S0926-3373(99)00028-4
|
[52] |
CAIXIA, MATSUNAGA A, TEZUKA M. Electroreductive dechlorination of chlorophenols with Pd catalyst supported on solid electrode[J]. Journal of Environmental Sciences, 2013, 25: S151-S154. doi: 10.1016/S1001-0742(14)60646-X
|
[53] |
LI J J, LUAN C, CUI Y Q, et al. Preparation and characterization of palladium/polyaniline/foamed nickel composite electrode for electrocatalytic dechlorination[J]. Separation and Purification Technology, 2019, 211: 198-206. doi: 10.1016/j.seppur.2018.09.040
|
[54] |
杨波. 基于钯修饰电极的多氯联苯电催化还原脱氯研究[D]. 北京: 清华大学, 2007.
|
[55] |
FLONER D, GENESTE F. Homogeneous coating of graphite felt by nickel electrodeposition to achieve light nickel felts with high surface area[J]. Electrochemistry Communications, 2007, 9(9): 2271-2275. doi: 10.1016/j.elecom.2007.06.033
|
[56] |
LOU Y Y, HE W Y, VERLATO E, et al. Ni-coated graphite felt modified with Ag nanoparticles: A new electrode material for electro-reductive dechlorination[J]. Journal of Electroanalytical Chemistry, 2019, 849: 113357. doi: 10.1016/j.jelechem.2019.113357
|
[57] |
LI J J, KONG K Z, CHONG Y T, et al. Unveiling the mechanism and performance of electrocatalytic hydrodechlorination of chlorinated PPCPs by electron-rich palladium electrode modulated through PANI-rGO interlayer[J]. Separation and Purification Technology, 2023, 323: 124452. doi: 10.1016/j.seppur.2023.124452
|
[58] |
HU Y X, YE D L, LUO B, et al. A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries[J]. Advanced Materials, 2017, 30(2): 1703824.1-1703824.6.
|
[59] |
ELKHOLY A E, HEAKAL F E-T, ALLAM N K. A facile electrosynthesis approach of amorphous Mn-Co-Fe ternary hydroxides as binder-free active electrode materials for high-performance supercapacitors[J]. Electrochimica Acta, 2019, 296: 59-68. doi: 10.1016/j.electacta.2018.11.038
|
[60] |
SHEN L F, CHE Q, LI H S, et al. Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage[J]. Advanced Functional Materials, 2014, 24(18): 2630-2637. doi: 10.1002/adfm.201303138
|
[61] |
ZHANG Z M, CHENG R, NAN J, et al. Effective electrocatalytic hydrodechlorination of 2, 4, 6-trichlorophenol by a novel Pd/MnO2/Ni foam cathode[J]. Chinese Chemical Letters, 2022, 33(8): 3823-3828. doi: 10.1016/j.cclet.2021.11.068
|
[62] |
WANG J M, WEI X F, WANG P P, et al. Insights into the enhanced performance of NiCo-LDH modified Pd/NF cathode for electrocatalytic hydrodechlorination[J]. Fuel, 2023, 341(Jun.1): 1.1-1.13.
|
[63] |
TANG J T, LIU K N, LI X Y, et al. Fe-doped NiO nanoarray interlayer-modified Pd/Ni foam cathode for enhanced electrocatalytic hydrodechlorination[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109843. doi: 10.1016/j.jece.2023.109843
|
[64] |
LOU Z M, XU J, ZHOU J S, et al. Insight into atomic H* generation, H2 evolution, and cathode potential of MnO2 induced Pd/Ni foam cathode for electrocatalytic hydrodechlorination[J]. Chemical Engineering Journal, 2019, 374: 211-220. doi: 10.1016/j.cej.2019.05.171
|
[65] |
LEI G P, CHEN D K, LI Q B, et al. NiCo-layered double hydroxide with cation vacancy defects for high-performance supercapacitors[J]. Electrochimica Acta, 2022, 413: 140143. doi: 10.1016/j.electacta.2022.140143
|
[66] |
ARIF M, YASIN G, SHAKEEL M, et al. Hierarchical CoFe-layered double hydroxide and g-C3N4 heterostructures with enhanced bifunctional photo/electrocatalytic activity towards overall water splitting[J]. Materials Chemistry Frontiers, 2019, 3(3): 520-531. doi: 10.1039/C8QM00677F
|
[67] |
LV X S, JIANG K X, WU H, et al. Defective layered double hydroxide nanosheet boosts electrocatalytic hydrodechlorination reaction on supported palladium nanoparticles[J]. ACS EST Water, 2022, 2(8): 1451-1460. doi: 10.1021/acsestwater.2c00205
|
[68] |
WU Z C, ZOU Z X, HUANG J S, et al. Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting[J]. Journal of Catalysis, 2018, 358: 243-252. doi: 10.1016/j.jcat.2017.12.020
|
[69] |
LOU Z M, YU C C, WEN X F, et al. Construction of Pd nanoparticles/two-dimensional Co-MOF nanosheets heterojunction for enhanced electrocatalytic hydrodechlorination[J]. Applied Catalysis B: Environmental, 2022, 317: 121730. doi: 10.1016/j.apcatb.2022.121730
|
[70] |
LI J J, WANG Y, ZHAO B, et al. Unraveling kinetics and mechanism of electrocatalytic hydrodechlorination of chlorinated PPCPs by nickel-cobalt metal organic framework supported palladium composite electrode[J]. Applied Catalysis B: Environmental, 2023, 332: 122754. doi: 10.1016/j.apcatb.2023.122754
|
[71] |
LI J J, MA S M, QI Z Y, et al. Insights into the removal of chloramphenicol by electrochemical reduction on Pd/NiFe-MOF/foam-Ni electrode: Performance and mechanism[J]. Applied Catalysis B: Environmental, 2023, 322: 122076. doi: 10.1016/j.apcatb.2022.122076
|
[72] |
WANG F Y, LI Y Y, XIE H Q, et al. Pd nanoparticles supported on microflower NiMOF modified roughed nickel foam with the enhanced active site for electrochemical dechlorination of trichloroacetic acid[J]. Separation and Purification Technology, 2023, 325: 124598. doi: 10.1016/j.seppur.2023.124598
|
[73] |
DUAN J J, CHEN S, ZHAO C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting[J]. Nature Communications, 2017, 8: 15341. doi: 10.1038/ncomms15341
|
[74] |
PAN J B, WANG B H, WANG J B, et al. Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation[J]. Angewandte Chemie International Edition, 2020, 60(3): 1433-1440.
|
[75] |
FAN Z M, ZHAO H C, WANG K F, et al. Enhancing electrocatalytic hydrodechlorination through interfacial microenvironment modulation[J]. Environmental Science & Technology, 2023, 57(3): 1499-1509.
|
[76] |
WEI X F, WANG J M, MIAO J, et al. Enhanced performance of an in-situ synthesized Pd/N-TiO2/Ti cathode for electrocatalytic hydrodechlorination[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648(Pt.2): 129320.
|
[77] |
ZHAO Z F, YU L, ZHENG L X, et al. TiO2@PDA inorganic-organic core-shell skeleton supported Pd nanodots for enhanced electrocatalytic hydrodechlorination[J]. Journal of Hazardous Materials, 2022, 435(Aug.5): 128998.1-128998.9.
|
[78] |
NI N, GU Z N, KANG Y Y, et al. Electrocatalytic deep hydrogenation of 4-chlorophenol into cyclohexanol on microchannel-enhanced Ru/TiO2 for wastewater detoxification and simultaneous resource recovery[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109709. doi: 10.1016/j.jece.2023.109709
|
[79] |
XU J H, FU X, LIU Y F, et al. Electrocatalytic dechlorination of florfenicol using a Pd-loaded on blue TiO2 nanotube arrays cathode[J]. Separation and Purification Technology, 2023, 323: 124460. doi: 10.1016/j.seppur.2023.124460
|
[80] |
LIU C, ZHANG A Y, PEI D N, et al. Efficient electrochemical reduction of nitrobenzene by defect-engineered TiO2-x single crystals[J]. Environmental Science & Technology, 2016, 50(10): 5234-5242.
|
[81] |
LI J, ZHOU H, ZHUO H, et al. Oxygen vacancies on TiO2 promoted the activity and stability of supported Pd nanoparticles for the oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2018, 6(5): 2264-2272. doi: 10.1039/C7TA09831F
|
[82] |
HUANG D H, KIM D J, RIGBY K, et al. Elucidating the role of single-atom Pd for electrocatalytic hydrodechlorination[J]. Environmental Science & Technology, 2021, 55(19): 13306-13316.
|
[83] |
YUAN G, KEANE M A. Liquid phase hydrodechlorination of chlorophenols over Pd/C and Pd/Al2O3: a consideration of HCl/catalyst interactions and solution pH effects[J]. Applied Catalysis B: Environmental, 2004, 52(4): 301-314. doi: 10.1016/j.apcatb.2004.04.015
|
[84] |
ZHAI P L, XIA M Y, WU Y Z, et al. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting[J]. Nature Communications, 2021, 12(1): 4587. doi: 10.1038/s41467-021-24828-9
|
[85] |
IHARA T, MIYOSHI M, IRIYAMA Y, et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping[J]. Applied Catalysis B: Environmental, 2003, 42(4): 403-409. doi: 10.1016/S0926-3373(02)00269-2
|
[86] |
CHEN C C, JIN L J, DONG H L, et al. Modulating adsorption of active hydrogen atoms on palladium nanoparticles: Doping ruthenium into metal-organic frameworks for efficient electrocatalytic hydrodechlorination[J]. Separation and Purification Technology, 2023, 324: 124527. doi: 10.1016/j.seppur.2023.124527
|
[87] |
LIU Y Z, MAO R, TONG Y T, et al. Reductive dechlorination of trichloroacetic acid (TCAA) by electrochemical process over Pd-In/Al2O3 catalyst[J]. Electrochimica Acta, 2017, 232: 13-21. doi: 10.1016/j.electacta.2017.02.071
|
[88] |
LIU Y, LIU L, SHAN J, et al. Electrodeposition of palladium and reduced graphene oxide nanocomposites on foam-nickel electrode for electrocatalytic hydrodechlorination of 4-chlorophenol[J]. Journal of Hazardous Materials, 2015, 290(Jun.15): 1-8.
|
[89] |
YAO Q F, ZHOU X F, XIAO S Z, et al. Amorphous nickel phosphide as a noble metal-free cathode for electrochemical dechlorination[J]. Water Research, 2019, 165(Nov.15): 114930.
|
[90] |
SUN C, LOU Z M, LIU Y, et al. Influence of environmental factors on the electrocatalytic dechlorination of 2, 4-dichlorophenoxyacetic acid on nTiN doped Pd/Ni foam electrode[J]. Chemical Engineering Journal, 2015, 281: 183-191. doi: 10.1016/j.cej.2015.06.113
|
[91] |
SHARD A G, DHANAK V R, SANTONI A. Structures of chlorine on palladium (111)[J]. Surface Science, 2000, 445(2-3): 309-314. doi: 10.1016/S0039-6028(99)01092-4
|
[92] |
LI J X, CHEN Y J, BAI R Y, et al. Construction of Pd/Ni2P-Ni foam nanosheet array electrode by in-situ phosphatization-electrodeposition strategy for synergistic electrocatalytic hydrodechlorination[J]. Chemical Engineering Journal, 2022, 435P3: 134932.
|
[93] |
PENG Y Y, CUI M Y, ZHANG Z Y, et al. Bimetallic composition-promoted electrocatalytic hydrodechlorination reaction on silver-palladium alloy nanoparticles[J]. ACS Catalysis, 2019, 9(12): 10803-10811. doi: 10.1021/acscatal.9b02282
|
[94] |
CHEN Y J, FENG C, WANG W H, et al. Electronic structure engineering of bimetallic Pd-Au alloy nanocatalysts for improving electrocatalytic hydrodechlorination performance[J]. Separation and Purification Technology, 2022, 289: 120731. doi: 10.1016/j.seppur.2022.120731
|
[95] |
BALL M R, RIVERA DONES K R, STANGLAND E, et al. Hydrodechlorination of 1, 2-dichloroethane on supported AgPd catalysts[J]. Journal of Catalysis, 2019, 370: 241-250. doi: 10.1016/j.jcat.2018.12.019
|
[96] |
RONG H P, CAI S F, NIU Z Q, et al. Composition-dependent catalytic activity of bimetallic nanocrystals: AgPd-catalyzed hydrodechlorination of 4-chlorophenol[J]. ACS Catalysis, 2013, 3(7): 1560-1563. doi: 10.1021/cs400282a
|
[97] |
SUN Y F, LI C S, ZHANG A M. Preparation of Ni/CNTs catalyst with high reducibility and their superior catalytic performance in benzene hydrogenation[J]. Applied Catalysis A: General, 2016, 522: 180-187. doi: 10.1016/j.apcata.2016.05.011
|
[98] |
LUO F, ZHANG Q, YU X X, et al. Palladium phosphide as a stable and efficient electrocatalyst for overall water splitting[J]. Angewandte Chemie International Edition, 2018, 57(45): 14862-14867. doi: 10.1002/anie.201810102
|
[99] |
ZHAO M. Fabrication of Ultrafine palladium phosphide nanoparticles as highly active catalyst for chemoselective hydrogenation of alkynes[J]. Chemistry – An Asian Journal, 2015, 11(4): 461-464.
|
[100] |
PAN Y, ZHANG C, LIN Y, et al. Electrocatalyst engineering and structure-activity relationship in hydrogen evolution reaction: From nanostructures to single atoms[J]. Science China Materials, 2020, 63(6): 921-948. doi: 10.1007/s40843-019-1242-1
|
[101] |
王婧, 崔春月, 田侠, 等. 非晶态Pd-P/聚吡咯/泡沫Ni电极对五氯苯酚的催化还原[J]. 无机材料学报, 2020, 35(10): 1157-1162.
|
[102] |
CHEN Y J, LIU Z, LIU S J, et al. In-Situ doping-induced crystal form transition of amorphous Pd–P catalyst for robust electrocatalytic hydrodechlorination[J]. Applied Catalysis B: Environmental, 2021, 284: 119713. doi: 10.1016/j.apcatb.2020.119713
|
[103] |
YANG J, JIANG S F, HU W F, et al. Highly efficient electrochemical dechlorination of florfenicol by an ultrathin molybdenum disulfide cathode[J]. Chemical Engineering Journal, 2022, 427: 131600. doi: 10.1016/j.cej.2021.131600
|
[104] |
HUANG L Z, PEDERSEN S U, BJERGLUND E T, et al. Hierarchical MoS2 nanosheets on flexible carbon felt as an efficient flow-through electrode for dechlorination[J]. Environmental Science: Nano, 2017, 4(12): 2286-2296. doi: 10.1039/C7EN00925A
|
[105] |
WU S, WAN L, LUO C H, et al. Electrocatalytic dechlorination of florfenicol using crystalline Co3S4/Ni3S4 nanowires arrayed on nickel foam via cathodic reduction[J]. Journal of Electroanalytical Chemistry, 2023, 948: 117817. doi: 10.1016/j.jelechem.2023.117817
|
[106] |
YANG B, YU G, HUANG J. Electrocatalytic hydrodechlorination of 2, 4, 5-trichlorobiphenyl on a palladium-modified nickel foam cathode[J]. Environmental Science & Technology, 2007, 41(21): 7503-7508.
|
[107] |
HAN J, DEMING R L, TAO F M. Theoretical study of molecular structures and properties of the complete series of chlorophenols[J]. The Journal of Physical Chemistry A, 2004, 108(38): 7736-7743. doi: 10.1021/jp047923r
|
[108] |
LEI C, LIANG F Y, LI J, et al. Electrochemical reductive dechlorination of chlorinated volatile organic compounds (Cl-VOCs): Effects of molecular structure on the dehalogenation reactivity and mechanisms[J]. Chemical Engineering Journal, 2019, 358: 1054-1064. doi: 10.1016/j.cej.2018.10.105
|
[109] |
SUN Z R, WEI X F, HAN Y B, et al. Complete dechlorination of 2, 4-dichlorophenol in aqueous solution on palladium/polymeric pyrrole-cetyl trimethyl ammonium bromide/foam-nickel composite electrode[J]. Journal of Hazardous Materials, 2013, 244-245(Jan.15): 287-294.
|
[110] |
TSYGANOK A I, YAMANAKA I, OTSUKA K. Pd-loaded carbon felt as the cathode for selective dechlorination of 2, 4-dichlorophenoxyacetic acid in aqueous solution[J]. Journal of the Electrochemical Society, 1998, 145(11): 3844-3850. doi: 10.1149/1.1838883
|
[111] |
TANG A L, WANG L M, ZHOU R H. Gibbs energies of formation of chlorinated benzoic acids and benzoates and application to their reductive dechlorination[J]. Journal of Molecular Structure: THEOCHEM, 2010, 960(1-3): 31-39. doi: 10.1016/j.theochem.2010.08.021
|
[112] |
LOU Y Y, GENESTE F, SOUTREL I, et al. Alachlor dechlorination prior to an electro-Fenton process: Influence on the biodegradability of the treated solution[J]. Separation and Purification Technology, 2020, 232: 115936. doi: 10.1016/j.seppur.2019.115936
|
[113] |
WANG S X, YANG M D, CUI C Y, et al. Duckweed derived N, P-doped carbon microspheres supported Ru as highly active catalyst for electrocatalytic hydrodechlorination diclofenac[J]. Electrochimica Acta, 2023, 462: 142707. doi: 10.1016/j.electacta.2023.142707
|
[114] |
WANG Y, TIAN X, WANG S X, et al. In situ-synthesized amorphous Pd/N-C microspheres derived from shrimp shells as a three-dimensional electrocatalyst for hydrodechlorination of diclofenac[J]. Chemical Engineering Journal, 2022, 428(2): 131231.
|