[1] |
YU L H, ZHENG S, GAO Q. Government environmental regulation strategy for new pollutants control in mariculture[J]. Marine Policy, 2023, 150: 105545. doi: 10.1016/j.marpol.2023.105545
|
[2] |
CABELLO F C. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment[J]. Environmental Microbiology, 2006, 8(7): 1137-1144. doi: 10.1111/j.1462-2920.2006.01054.x
|
[3] |
ORLANDO E A, COSTA ROQUE A G, LOSEKANN M E, et al. UPLC–MS/MS determination of florfenicol and florfenicol amine antimicrobial residues in Tilapia muscle[J]. Journal of Chromatography B, 2016, 1035: 8-15. doi: 10.1016/j.jchromb.2016.09.013
|
[4] |
OLIVEIRA A S, ALVES M, LEITÃO F, et al. Bioremediation of coastal aquaculture effluents spiked with florfenicol using microalgae-based granular sludge–a promising solution for recirculating aquaculture systems[J]. Water Research, 2023, 233: 119733. doi: 10.1016/j.watres.2023.119733
|
[5] |
ESMAILI Z, CHESHMBERAH F, SOLAIMANY NAZAR A R, et al. Treatment of florfenicol of synthetic trout fish farm wastewater through nanofiltration and photocatalyst oxidation[J]. Environmental Technology, 2017, 38(16): 2040-2047. doi: 10.1080/09593330.2016.1245359
|
[6] |
BABU PONNUSAMI A, SINHA S, ASHOKAN H, et al. Advanced oxidation process (AOP) combined biological process for wastewater treatment: A review on advancements, feasibility and practicability of combined techniques[J]. Environmental Research, 2023, 237: 116944. doi: 10.1016/j.envres.2023.116944
|
[7] |
XIAO S, CHENG M, ZHONG H, et al. Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: A review[J]. Chemical Engineering Journal, 2020, 384: 123265. doi: 10.1016/j.cej.2019.123265
|
[8] |
ZHAO X, AN Q D, XIAO Z Y, et al. Seaweed-derived multifunctional nitrogen/cobalt-codoped carbonaceous beads for relatively high-efficient peroxymonosulfate activation for organic pollutants degradation[J]. Chemical Engineering Journal, 2018, 353: 746-759. doi: 10.1016/j.cej.2018.07.171
|
[9] |
ANJORIN E O, ALFRED M O, SOTUNDE B, et al. Overview of the mechanism of degradation of pharmaceuticals by persulfate/peroxysulfate catalysts[J]. ChemBioEng Reviews, 2024, 11(4): e202300079. doi: 10.1002/cben.202300079
|
[10] |
YANG Y Y, ZHANG P P, HU K S, et al. Sustainable redox processes induced by peroxymonosulfate and metal doping on amorphous manganese dioxide for nonradical degradation of water contaminants[J]. Applied Catalysis B: Environmental, 2021, 286: 119903. doi: 10.1016/j.apcatb.2021.119903
|
[11] |
LIN K Y , CHEN Y C, LIN Y F. LaMO3 perovskites (M=Co, Cu, Fe and Ni) as heterogeneous catalysts for activating peroxymonosulfate in water[J]. Chemical Engineering Science, 2017, 160: 96-105.
|
[12] |
WANG Y X, XIE Y B, CHEN C M, et al. Synthesis of magnetic carbon supported manganese catalysts for phenol oxidation by activation of peroxymonosulfate[J]. Catalysts, 2017, 7(1): 3.
|
[13] |
ORGE C A, ÓRFÃO J J M, PEREIRA M F R. Composites of manganese oxide with carbon materials as catalysts for the ozonation of oxalic acid[J]. Journal of Hazardous Materials, 2012, 213: 133-139.
|
[14] |
李珏秀, 施启旭, 赵锐, 等. 锰基催化剂用于活化过硫酸盐降解有机废水的研究进展[J]. 环境化学, 2023, 42(11): 3861-3877. doi: 10.7524/j.issn.0254-6108.2023011704
LI J X, SHI Q X, ZHAO R, et al. Research progress on manganese based catalysts for activating persulfate degradation of organic wastewater[J]. Environmental Chemistry, 2023, 42(11): 3861-3877 (in Chinese). doi: 10.7524/j.issn.0254-6108.2023011704
|
[15] |
LIU L, LIU Z, CHEN Y, et al. In-situ synthesis of manganese oxide-carbon nanocomposite and its application in activating persulfate for bisphenol F degradation[J]. Science of the Total Environment, 2021, 772: 144953. doi: 10.1016/j.scitotenv.2021.144953
|
[16] |
DO S H, KWON Y J, BANG S J, et al. Persulfate reactivity enhanced by Fe2O3-MnO and CaO-Fe2O3-MnO composite: Identification of composite and degradation of CCl4 at various levels of pH[J]. Chemical Engineering Journal, 2013, 221: 72-80. doi: 10.1016/j.cej.2013.01.097
|
[17] |
DIAO Z H, QIAN W, GUO P R, et al. Photo-assisted degradation of bisphenol A by a novel FeS2@SiO2 microspheres activated persulphate process: Synergistic effect, pathway and mechanism[J]. Chemical Engineering Journal, 2018, 349: 683-693. doi: 10.1016/j.cej.2018.05.132
|
[18] |
ZHOU Q X, SONG C L, WANG P F, et al. Generating dual-active species by triple-atom sites through peroxymonosulfate activation for treating micropollutants in complex water[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(13): e2300085120.
|
[19] |
郑佳慧, 王嘉妮, 柯佳琪, 等. 碳氮包覆纳米Fe3O4的非自由基路径光催化去除养殖废水中四环素的机制研究[J]. 环境科学研究, 2023, 36(7): 1306-1316.
ZHENG J H, WANG J N, KE J Q, et al. Mechanism of tetracycline removal from aquaculture wastewater by carbon nitrogen coated nano-Fe3O4 via non-free radical photocatalysis[J]. Research of Environmental Sciences, 2023, 36(7): 1306-1316 (in Chinese).
|
[20] |
LING C Y, QIN X Z, JIANG L J, et al. Investigation of the Effect of Manganese Oxides on the Reduction of Hexavalent Chromium by Sodium Alginate-Dispersed Nano-Zero-Valent Iron and the Mechanism[J]. Water Air Soil Pollut, 2023, 234(3): 187. doi: 10.1007/s11270-023-06209-8
|
[21] |
HUANG G X, WANG C Y, YANG C W, et al. Degradation of Bisphenol A by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres: Synergism between Mn and Fe[J]. Environmental Science & Technology, 2017, 51(21): 12611-12618.
|
[22] |
HU P D, LONG M C. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications[J]. Applied Catalysis B: Environmental, 2016, 181: 103-117. doi: 10.1016/j.apcatb.2015.07.024
|
[23] |
YAO J Y, WU N N, TANG X S, et al. Methyl phenyl sulfoxide (PMSO) as a quenching agent for high-valent metal-oxo species in peroxymonosulfate based processes should be reconsidered[J]. Chemical Engineering Journal Advances, 2022, 12: 100378. doi: 10.1016/j.ceja.2022.100378
|
[24] |
DENG J, GE Y J, TAN C Q, et al. Degradation of ciprofloxacin using α-MnO2 activated peroxymonosulfate process: Effect of water constituents, degradation intermediates and toxicity evaluation[J]. Chemical Engineering Journal, 2017, 330: 1390-1400. doi: 10.1016/j.cej.2017.07.137
|
[25] |
HUANG J Z, ZHONG S F, DAI Y F, et al. Effect of MnO2 Phase Structure on the Oxidative Reactivity toward Bisphenol A Degradation[J]. Environmental Science & Technology, 2018, 52(19): 11309-11318.
|
[26] |
XU H D, ZHANG Y C, LI J J, et al. Heterogeneous activation of peroxymonosulfate by a biochar-supported Co3O4 composite for efficient degradation of chloramphenicols[J]. Environmental Pollution, 2020, 257: 113610. doi: 10.1016/j.envpol.2019.113610
|
[27] |
PENG Y F, XUE C J, LUO J Y, et al. Lanthanum-doped magnetic biochar activating persulfate in the degradation of florfenicol[J]. Science of The Total Environment, 2024, 916: 170312. doi: 10.1016/j.scitotenv.2024.170312
|
[28] |
ZHAO Y, LI B, LI Y, et al. Synergistic activation of peroxymonosulfate between Co and MnO for bisphenol A degradation with enhanced activity and stability[J]. Journal of Colloid and Interface Science, 2022, 623: 775-786. doi: 10.1016/j.jcis.2022.05.105
|
[29] |
CHEN J S, LUO H Y, LUO D Y, et al. New insights into the degradation of nitrobenzene by activated persulfate with sulfidated nanoscale zero-valent iron: Synergistic effects of reduction and reactive oxygen species oxidation[J]. Separation and Purification Technology, 2023, 322: 124252. doi: 10.1016/j.seppur.2023.124252
|
[30] |
XU A L, WU D H, ZHANG R, et al. Bio-synthesis of Co-doped FeMnOx and its efficient activation of peroxymonosulfate for the degradation of moxifloxacin[J]. Chemical Engineering Journal, 2022, 435: 134695. doi: 10.1016/j.cej.2022.134695
|
[31] |
CHEN M J , YANG T X, ZHAO L Y, et al. Manganese oxide on activated carbon with peroxymonosulfate activation for enhanced ciprofloxacin degradation: Activation mechanism and degradation pathway[J]. Applied Surface Science, 2024, 645: 158835.
|
[32] |
ZHANG Y, LI J H, ZHOU L, et al. Aqueous photodegradation of antibiotic florfenicol: kinetics and degradation pathway studies[J]. Environmental Science and Pollution Research International, 2016, 23(7): 6982-6989. doi: 10.1007/s11356-015-5897-1
|
[33] |
WANG X Y, LUO X Y, LI R, et al. Boosting peroxymonosulfate activation over partial Zn-substituted Co3O4 for florfenicol degradation: Insights into catalytic performance, degradation mechanism and routes[J]. Chemical Engineering Journal, 2024, 491: 152197. doi: 10.1016/j.cej.2024.152197
|
[34] |
TANG Z, KONG Y F, QIN Y, et al. Performance and degradation pathway of florfenicol antibiotic by nitrogen-doped biochar supported zero-valent iron and zero-valent copper: A combined experimental and DFT study[J]. Journal of Hazardous Materials, 2023, 459: 132172. doi: 10.1016/j.jhazmat.2023.132172
|
[35] |
CHEN Z H, CHEN J D, TAN S D, et al. Dechlorination Helps Defluorination: Insights into the Defluorination Mechanism of Florfenicol by S-nZVI and DFT Calculations on the Reaction Pathways[J]. Environmental Science & Technology, 2024, 58(5): 2542-2553.
|