[1] |
CHIA W Y, CHEW K W, LE C F, et al. Sustainable utilization of biowaste compost for renewable energy and soil amendments[J]. Environmental Pollution, 2020, 267: 115662. doi: 10.1016/j.envpol.2020.115662
|
[2] |
程艳, 刘永德, 赵继红, 等. 污泥堆肥中高温菌的研究进展[J]. 中国资源综合利用, 2014(2): 31-32. doi: 10.3969/j.issn.1008-9500.2014.02.015
|
[3] |
PATRA R K, BEHERA D, MOHAPATRA K K, et al. Juxtaposing the quality of compost and vermicompost produced from organic wastes amended with cow dung[J]. Environmental Research, 2022, 214: 114119. doi: 10.1016/j.envres.2022.114119
|
[4] |
SANCHEZ Q J, OSPINA DA M S. Compost supplementation with nutrients and microorganisms in composting process[J]. Waste Management, 2017, 69: 136-153. doi: 10.1016/j.wasman.2017.08.012
|
[5] |
MENG X, LIU B, ZHANG H, et al. Co-composting of the biogas residues and spent mushroom substrate: Physicochemical properties and maturity assessment[J]. Bioresource Technology, 2019, 276: 281-287. doi: 10.1016/j.biortech.2018.12.097
|
[6] |
XIAO Y, ZENG G M, YANG Z H, et al. Continuous thermophilic composting (CTC) for rapid biodegradation and maturation of organic municipal solid waste[J]. Bioresource Technology, 2009, 100: 4807-4813. doi: 10.1016/j.biortech.2009.05.013
|
[7] |
LIM S L, WU T Y. Characterization of matured vermicompost derived from valorization of palm oil mill byproduct[J]. Journal of Agricultural and Food Chemistry, 2016, 64(8): 1761-1769. doi: 10.1021/acs.jafc.6b00531
|
[8] |
XIE G, KONG X, KANG J, et al. Fungal community succession contributes to product maturity during the co-composting of chicken manure and crop residues[J]. Bioresource Technology, 2020, 27(9): 9658-9668.
|
[9] |
BAKER G C, SMITH J J, COWAN D A. Review and re-analysis of domain-specific 16S primers[J]. Journal of Microbiological Methods, 2004, 55(3): 541-555.
|
[10] |
YANG W, ZHANG L. Addition of mature compost improves the composting of green waste[J]. Bioresource Technology, 2020, 105: 190-197.
|
[11] |
WU X, SUN Y, DENG L, et al. Insight to key diazotrophic community during composting of dairy manure with biochar and its role in nitrogen transformation[J]. Waste Management, 2022, 350: 126927.
|
[12] |
程旭艳, 霍培书, 尚晓瑛, 等. 堆肥中高温降解菌的筛选、鉴定及堆肥效果[J]. 中国农业大学学报, 2012, 17(5): 105-111. doi: 10.11841/j.issn.1007-4333.2012.05.017
|
[13] |
阮馨怡, 刘曦, 关玥, 等. 高效污泥降解菌种的筛选及在污泥堆肥中的效果[J]. 浙江农业学报, 2018, 30(9): 1569-1575. doi: 10.3969/j.issn.1004-1524.2018.09.18
|
[14] |
陈枭嘉, 李立, 马新新, 等. 豆渣降解高温菌的筛选及应用[J]. 河南农业科学, 2021, 50(1): 172-179.
|
[15] |
江高飞, 暴彦灼, 杨天杰, 等. 高温秸秆降解菌的筛选及其纤维素酶活性研究[J]. 农业环境科学学报, 2020, 39(10): 2465-2472. doi: 10.11654/jaes.2020-0958
|
[16] |
邱菲, 韩依辛, 魏琦麟, 等. 培养组学在动物肠道微生物应用的研究进展[J]. 中国畜牧兽医, 2023, 50(2): 598-605.
|
[17] |
MATAR G, BILEN M. Culturomics, a potential approach paving the way toward bacteriotherapy[J]. Current Opinion in Microbiology, 2022, 69: 102194. doi: 10.1016/j.mib.2022.102194
|
[18] |
LAGIER J C, DUBOURG G, MILLION M, et al. Culturing the human microbiota and culturomics[J]. Nature Reviews Microbiology, 2018, 16: 540-550. doi: 10.1038/s41579-018-0041-0
|
[19] |
WANG S P, SUN Z Y, WANG S T, et al. Bacterial community structure and metabolic function succession during the composting of distilled grain waste[J]. Applied Biochemistry and Biotechnology, 2022, 194(4): 1479-1495. doi: 10.1007/s12010-021-03731-5
|
[20] |
林燕, 阮馨怡, 张伟, 等. 一种利用普通生化设备分离纯化高温菌株的方法: CN109517754A[P]. 2019-03-26.
|
[21] |
韩波波. 高温菌的分离纯化及性质研究[D]. 上海: 华东师范大学, 2008.
|
[22] |
THOMPSON L R, SANDERS J G, MCDONALD D, et al. A communal catalogue reveals Earth’s multiscale microbial diversity[J]. Nature, 2017, 551: 457-463. doi: 10.1038/nature24621
|
[23] |
BOKULICH N A, SUBRAMANIAN S, FAITH J J, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J]. Nature Methods, 2013, 10(1): 57-59. doi: 10.1038/nmeth.2276
|
[24] |
MAGOČ T, SALZBERG S L. FLASH: Fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963. doi: 10.1093/bioinformatics/btr507
|
[25] |
EDGAR R C. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26(19): 2460-2461. doi: 10.1093/bioinformatics/btq461
|
[26] |
LÖYTYNOJA A, VILELLA A J, GOLDMAN N. Accurate extension of multiple sequence alignments using a phylogeny-aware graph algorithm[J]. Bioinformatics, 2012, 28(13): 1684-1691. doi: 10.1093/bioinformatics/bts198
|
[27] |
MPOFU E, VEJARANO F, SUZUKI-MINAKUCHI C, et al. Complete genome sequence of Bacillus licheniformis TAB7, a compost-deodorizing strain with potential for plant growth promotion[J]. Microbiology Resource Announcements, 2019, 8(4): 11-18.
|
[28] |
MUSILOVA J, KOURILOVA X, PERNICOVA I, et al. Novel thermophilic polyhydroxyalkanoates producing strain Aneurinibacillus thermoaerophilus CCM 8960[J]. Applied Microbiology and Biotechnology, 2022, 106(12): 4669-4681. doi: 10.1007/s00253-022-12039-1
|
[29] |
MA L, ZHAO Z, ZHAO Y, et al. Weizmannia coagulans JA845 improves atherosclerosis induced by vitamin D3 and high-fat diet in rats through modulating lipid metabolism, oxidative stress, and endothelial vascular injury[J]. Journal of Applied Microbiology, 2023, 134(8): 159-165. doi: 10.1093/jambio/lxad159
|
[30] |
KANANAVIČIUTE R, ČITAVIČIUS D. Genetic engineering of Geobacillus spp.[J]. Journal of Microbiological Methods, 2015, 111: 31-39. doi: 10.1016/j.mimet.2015.02.002
|
[31] |
CHANG Y, ZHOU K, YANG T, et al. Bacillus licheniformis inoculation promoted humification process for kitchen waste composting: Organic components transformation and bacterial metabolic mechanism[J]. Environmental Research, 2023, 237(Pt 2): 117016.
|
[32] |
KARPOV D S, DOMASHIN A I, KOTLOV M I, et al. Biotechnological potential of the Bacillus subtilis 20 Strain[J]. Molecular Biology, 2020, 54(1): 137-145.
|
[33] |
WANG W K, LIANG C M. Enhancing the compost maturation of swine manure and rice straw by applying bioaugmentation[J]. Scientific Reports, 2021, 11(1): 6103. doi: 10.1038/s41598-021-85615-6
|
[34] |
刘国防. 高效油脂降解菌剂构建与效果研究[D]. 杭州: 浙江大学, 2012.
|
[35] |
ZHAO Y, LIU Y, NIU H, et al. The structure and function analysis of bacterial community during aerobic composting of chicken manure[J]. Shengwu Gongcheng Xuebao/Chinese Journal of Biotechnology, 2023, 39(3): 1175-1187.
|
[36] |
CHEN S, DONG X. Proteiniphilum acetatigenes gen. nov. , sp. nov. , from a UASB reactor treating brewery wastewater[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(Pt 6): 2257-2261.
|
[37] |
LIU L, LIU Y, SHIN H D, et al. Developing Bacillus spp. as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology[J]. Applied Microbiology and Biotechnology, 2013, 97(14): 6113-6127. doi: 10.1007/s00253-013-4960-4
|
[38] |
BOUANANE-DARENFED A, HANIA W Ben, HACENE H, et al. Caldicoprobacter guelmensis sp. nov. , a thermophilic, anaerobic, xylanolytic bacterium isolated from a hot spring[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt 6): 2049-2053.
|
[39] |
ZHANG J, YUE Z, DING C, et al. Metagenomic binning analyses of pig manure composting reveal potential antibiotic-degrading bacteria and their risk of antibiotic resistance genes[J]. Bioresource Technology, 2023, 371: 128540. doi: 10.1016/j.biortech.2022.128540
|
[40] |
ANBARASAN S, WAHLSTRÖM R, HUMMEL M, et al. High stability and low competitive inhibition of thermophilic Thermopolyspora flexuosa GH10 xylanase in biomass-dissolving ionic liquids[J]. Applied Microbiology and Biotechnology, 2017, 101(4): 1487-1498. doi: 10.1007/s00253-016-7922-9
|
[41] |
PATIL V S, LUGANI Y, CHAUDHARI R D, et al. Description and genomic insights into a multidrug resistant novel bacterium Savagea serpentis sp. nov. , isolated from the scats of a vine snake (Ahaetulla nasuta)[J]. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 2021, 114(6): 687-696.
|
[42] |
SKRZYPCZAK N, PRZYBYLSKI P. Modifications, biological origin and antibacterial activity of naphthalenoid ansamycins[J]. Natural Product Reports, 2022, 39(9): 1653-1677. doi: 10.1039/D2NP00002D
|