[1] 陈小平, 王萌, 杨长明, 等. 四环素类抗生素在我国水环境污染现状及其对水生生物的毒性研究进展[J]. 应用化工, 2021, 50(10): 2780-2785. doi: 10.3969/j.issn.1671-3206.2021.10.033 CHEN X P, WANG M, YANG C M, et al. Review of contaminations in water of tetracyclines in China and toxicity on aquatic organisms[J]. Applied Chemical Industry, 2021, 50(10): 2780-2785 (in Chinese). doi: 10.3969/j.issn.1671-3206.2021.10.033
[2] 黄梦凡, 李敏, 刘娟, 等. 地表水中20种四环素类抗生素及其转化产物的同时检测方法研究和应用[J]. 环境化学, 2024, 23(8), doi:10.7524/j.issn.0254-6108.2023020601. HUANG M F, LI M, LIU J, et al. Research and application of simultaneous detection method for 20 tetracyclines and transformation products in surface water[J]. Environmental Chemistry, 2024, 23(8), doi:10.7524/j.issn.0254-6108.2023020601(in Chinese).
[3] 梁清华. 1Dg-C3N4基光催化剂的制备及其去除水中四环素的机理研究[D]. 湖南: 湖南大学, 2022. LIANG Q H, Synthesis of 1Dg-C3N4-based photocatalysts and exploration the mechanism of removing tetracycline from water[D]. Hunan: Hunan University, 2022 (in Chinese).
[4] ZHANG Y X, RUAN Q Q, PENG Y G, et al. Synthesis of hierarchical-pore metal-organic framework on liter scale for large organic pollutants capture in wastewater[J]. Journal of Colloid and Interface Science, 2018, 525: 39-47. doi: 10.1016/j.jcis.2018.04.063
[5] REGO R M, KURKURI M D, KIGGA M. A comprehensive review on water remediation using UiO-66 MOFs and their derivatives[J]. Chemosphere, 2022, 302: 134845. doi: 10.1016/j.chemosphere.2022.134845
[6] XIA J, GAO Y X, YU G. Tetracycline removal from aqueous solution using zirconium-based metal-organic frameworks (Zr-MOFs) with different pore size and topology: Adsorption isotherm, kinetic and mechanism studies[J]. Journal of Colloid and Interface Science, 2021, 590: 495-505. doi: 10.1016/j.jcis.2021.01.046
[7] WANG Y L, ZHANG N, CHEN D N, et al. Facile synthesis of acid-modified UiO-66 to enhance the removal of Cr(VI) from aqueous solutions[J]. The Science of the Total Environment, 2019, 682: 118-127. doi: 10.1016/j.scitotenv.2019.04.407
[8] WU H, CHUA Y S, KRUNGLEVICIUTE V, et al. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption[J]. Journal of the American Chemical Society, 2013, 135(28): 10525-10532. doi: 10.1021/ja404514r
[9] MAI T T N, JINSOO K, KY V T. Surfactant-assisted synthesis of defective UiO-67(Zr) framework and its application for CO adsorption and CO/N2 separation[J]. Inorganic Chemistry Communications, 2023, 153: 110783. doi: 10.1016/j.inoche.2023.110783
[10] FANG F, LV Q K, LI P, et al. Screening of hierarchical porous UiO-67 for efficient removal of glyphosate from aqueous solution[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107824. doi: 10.1016/j.jece.2022.107824
[11] ŁUCZAK J, KROCZEWSKA M, BALUK M, et al. Morphology control through the synthesis of metal-organic frameworks[J]. Advances in Colloid and Interface Science, 2023, 314: 102864. doi: 10.1016/j.cis.2023.102864
[12] WANG L J, WEN X H, LI J, et al. Roles of defects and linker exchange in phosphate adsorption on UiO-66 type metal organic frameworks: Influence of phosphate concentration[J]. Chemical Engineering Journal, 2021, 405: 126681. doi: 10.1016/j.cej.2020.126681
[13] 石晓宇. UiO-67及其改性材料对VOCs吸附性能的研究[D]. 上海: 上海理工大学, 2021. SHI X Y, Study on adsorption properties of VOCs over UiO-67 and its modified materials[D]. Shanghai: University of Shanghai for Science & Technology, 2021(in Chinese).
[14] DU M S, CAO Y Y, LUO X L, et al. Shapeable sodium alginate aerogel beads incorporated with L-cysteine-modified defective UiO-67 for heavy metal ions removal[J]. Chemical Engineering Journal, 2023, 475: 146289. doi: 10.1016/j.cej.2023.146289
[15] VO T K, LE V N, QUANG D T, et al. Rapid defect engineering of UiO-67 (Zr) via microwave-assisted continuous-flow synthesis: Effects of modulator species and concentration on the toluene adsorption[J]. Microporous and Mesoporous Materials, 2020, 306: 110405. doi: 10.1016/j.micromeso.2020.110405
[16] JIE L, YANG L, XIANG X W, et al. Experimental and theoretical study on selenate uptake to zirconium metal-organic frameworks: Effect of defects and ligands[J]. Chemical Engineering Journal, 2017: 1012-1021.
[17] 李瑞. 改性锆基金属有机骨架对污水中四环素的吸附性能研究[D]. 重庆: 重庆大学, 2021. LI R. Adsorption mechanisms of tetracycline on modified zirconium metal organic framework in wastewater[D]. Chongqing: Chongqing University, 2021 (in Chinese).
[18] SHEARER G C, CHAVAN S, BORDIGA S, et al. Defect engineering: Tuning the porosity and composition of the metal–organic framework UiO-66 via modulated synthesis[J]. Chemistry of Materials, 2016, 28(11): 3749-3761. doi: 10.1021/acs.chemmater.6b00602
[19] LI W W, ZHOU C C, LI C, et al. Synthesis of CNT/UiO-66-NH2 adsorbent and the selective adsorption of gallium in solution[J]. Separation and Purification Technology, 2023, 323: 124464. doi: 10.1016/j.seppur.2023.124464
[20] 万徐庆, 孙涵, 王磊, 等. 胺化Fe3O4@SiO2纳米颗粒的制备及其对水溶液中Cr(VI)的去除[J]. 硅酸盐学报, 2022, 50(5): 1364-1374. WAN X Q, SUN H, WANG L, et al. Preparation of amine-functionalized Fe3O4@SiO2 nanoparticles for removal of Cr(Ⅵ) from aqueous solution[J]. Journal of the Chinese Ceramic Society, 2022, 50(5): 1364-1374 (in Chinese).
[21] DONG Y H, WANG X D, SUN H, et al. Construction of a 0D/3D AgI/MOF-808 photocatalyst with a one-photon excitation pathway for enhancing the degradation of tetracycline hydrochloride: Mechanism, degradation pathway and DFT calculations[J]. Chemical Engineering Journal, 2023, 460: 141842. doi: 10.1016/j.cej.2023.141842
[22] LV Y, WANG S, ZHANG R, et al. pH-modulated formation of uniform MOF-5 sheets[J]. Inorganic Chemistry Communications, 2018, 97: 30-33. doi: 10.1016/j.inoche.2018.09.003
[23] HOSSEIN V A, FATANEH N, ESMAEIL S, et al. Functionalized Zr-UiO-67 metal-organic frameworks: Structural landscape and application[J]. Coordination Chemistry Reviews, 2021, 445: 214050. doi: 10.1016/j.ccr.2021.214050
[24] AYAWEI N, EBELEGI A N, WANKASI D. Modelling and interpretation of adsorption isotherms[J]. Journal of Chemistry, 2017, 2017: 3039817.
[25] AL-GHOUTI M A, DA’ANA D A, Guidelines for the use and interpretation of adsorption isotherm models: A review[J]. Journal of Hazardous Materials, 2020, 393: 122383.
[26] SHENG D H, YING X T, LI R, et al. Polydopamine-mediated modification of ZIF-8 onto magnetic nanoparticles for enhanced tetracycline adsorption from wastewater[J]. Chemosphere, 2022, 308(Pt 1): 136249.
[27] FAN L Q, MIAO J X, WANG X D, et al. Novel Al-doped UiO-66-NH2 nanoadsorbent with excellent adsorption performance for tetracycline: Adsorption behavior, mechanism, and application potential[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109292. doi: 10.1016/j.jece.2023.109292
[28] 邹震, 许路, 乔伟, 等. 硼掺杂介孔炭吸附四环素的效能与机制[J]. 环境科学, 2024, 45(2): 885-897. ZOU Z, XU L, QIAO W, et al. Efficacy and mechanism of tetracycline adsorption by boron-doped mesoporous carbon[J]. Environmental Science, 2024, 45(2): 885-897 (in Chinese).
[29] ZHAO N, MA Q Y, ZHANG B F, et al. New insight into removal of tetracycline by a two-dimensional graphene-like carbon adsorbent prepared using one-step pyrolysis of spent bleaching earth: Adsorption behaviors, mechanisms and cost analysis[J]. Separation and Purification Technology, 2023, 327: 124950. doi: 10.1016/j.seppur.2023.124950
[30] ZHENG X Y, PAN C Q, ZHENG S M, et al. Functionalized magnetic chitosan-based adsorbent for efficient tetracycline removal: Deep investigation of adsorption behaviors and mechanisms[J]. Separation and Purification Technology, 2024, 335: 126212. doi: 10.1016/j.seppur.2023.126212
[31] ZHANG Y, HUANG Z J, FANG X, et al. Preparation of magnetic porous biochar through hydrothermal pretreatment combined with K2FeO4 activation to improve tetracycline removal[J]. Microporous and Mesoporous Materials, 2022, 343: 112188. doi: 10.1016/j.micromeso.2022.112188
[32] 周宜. 水稳定性MOFs对四环素和诺氟沙星的吸附及其机理研究[D]. 安徽: 安徽农业大学, 2022. ZHOU Y, Desorption and mechanism of tetracycline and norfloxacin on water-stable MOFs[D]. Anhui: Anhui Agricultural University, 2022 (in Chinese).
[33] YANG Z H, CAO J, CHEN Y P, et al. Mn-doped zirconium metal-organic framework as an effective adsorbent for removal of tetracycline and Cr(Ⅵ) from aqueous solution[J]. Microporous and Mesoporous Materials, 2019, 277: 277-285. doi: 10.1016/j.micromeso.2018.11.014
[34] ZHONG J, YUAN X, XIONG J, et al. Solvent-dependent strategy to construct mesoporous Zr-based metal-organic frameworks for high-efficient adsorption of tetracycline[J]. Environmental Research, 2023, 226: 115633. doi: 10.1016/j.envres.2023.115633