[1] |
BOUMERIAME H Da SILVA E S CHEREVAN A S et al. Layered double hydroxide (LDH)-based materials: A mini-review on strategies to improve the performance for photocatalytic water splitting[J]. Journal of Energy Chemistry, 2022, 64(1): 406-431 (in Chinese).
|
[2] |
ZHANG K L, HU H J, SHI L T, et al. Strategies for optimizing the photocatalytic water-splitting performance of metal–organic framework-based materials[J]. Small Science, 2021, 1(12): 2100060. doi: 10.1002/smsc.202100060
|
[3] |
ABDUL NASIR J, MUNIR A, AHMAD N, et al. Photocatalytic Z-scheme overall water splitting: Recent advances in theory and experiments[J]. Advanced Materials, 2021, 33(52): e2105195. doi: 10.1002/adma.202105195
|
[4] |
ZHANG G P, CHEN D Y, LI N J, et al. Construction of hierarchical hollow Co9S8/ZnIn2S4 tubular heterostructures for highly efficient solar energy conversion and environmental remediation[J]. Angewandte Chemie, 2020, 132(21): 8332-8338. doi: 10.1002/ange.202000503
|
[5] |
HAO X Q, XIANG D Z, JIN Z L. Zn‐vacancy engineered S‐scheme ZnCdS/ZnS photocatalyst for highly efficient photocatalytic H2 evolution[J]. ChemCatChem, 2021, 13(22): 4738-4750. doi: 10.1002/cctc.202100994
|
[6] |
LIU Y Y, XIANG Z H. Fully conjugated covalent organic polymer with carbon-encapsulated Ni2P for highly sustained photocatalytic H2 production from seawater[J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41313-41320.
|
[7] |
LIU Y, NIU H T, GU W, et al. In-situ construction of hierarchical CdS/MoS2 microboxes for enhanced visible-light photocatalytic H2 production[J]. Chemical Engineering Journal, 2018, 339: 117-124. doi: 10.1016/j.cej.2018.01.124
|
[8] |
CHANDRASEKARAN S, YAO L, DENG L B, et al. Recent advances in metal sulfides: From controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond[J]. Chemical Society Reviews, 2019, 48(15): 4178-4280. doi: 10.1039/C8CS00664D
|
[9] |
CAO S, CHEN Y, WANG C J, et al. Spectacular photocatalytic hydrogen evolution using metal-phosphide/CdS hybrid catalysts under sunlight irradiation[J]. Chemical Communications, 2015, 51(41): 8708-8711. doi: 10.1039/C5CC01799H
|
[10] |
LIU F L, WANG Z, WENG Y X, et al. Black phosphorus quantum dots modified CdS nanowires with efficient charge separation for enhanced photocatalytic H2 evolution[J]. ChemCatChem, 2021, 13(5): 1355-1361. doi: 10.1002/cctc.202001847
|
[11] |
LUO M, LIU Y, HU J C, et al. One-pot synthesis of CdS and Ni-doped CdS hollow spheres with enhanced photocatalytic activity and durability[J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1813-1821.
|
[12] |
ZHU M S, OSAKADA Y, KIM S, et al. Black phosphorus: A promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution[J]. Applied Catalysis B: Environmental, 2017, 217: 285-292. doi: 10.1016/j.apcatb.2017.06.002
|
[13] |
HABIBI M H, RAHMATI M H. Fabrication and characterization of ZnO@CdS core-shell nanostructure using acetate precursors: XRD, FESEM, DRS, FTIR studies and effects of cadmium ion concentration on band gap[J]. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 2014, 133: 13-18. doi: 10.1016/j.saa.2014.04.110
|
[14] |
胡建民, 王蕊, 王春婷, 等. 晶体X射线衍射模型和布拉格方程的一般推导[J]. 大学物理, 2015, 34(3): 1-2.
HU J M, WANG R, WANG C T, et al. X ray diffraction model of crystal and general derivation of Bragg equation[J]. College Physics, 2015, 34(3): 1-2 (in Chinese).
|
[15] |
HOTA G, IDAGE S, KHILAR K. Characterization of nano-sized CdS–Ag2S core-shell nanoparticles using XPS technique[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 293: 5-12.
|
[16] |
ABE T, KASHIWABA Y, BABA M, et al. XPS analysis of p-type Cu-doped CdS thin films[J]. Applied Surface Science, 2001, 175/176: 549-554. doi: 10.1016/S0169-4332(01)00147-7
|
[17] |
NING X F, LU G X. Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting[J]. Nanoscale, 2020, 12(3): 1213-1223. doi: 10.1039/C9NR09183A
|
[18] |
GUAN L, CHEN X B. Photoexcited charge transport and accumulation in anatase TiO2[J]. ACS Applied Energy Materials, 2018, 1(8): 4313-4320. doi: 10.1021/acsaem.8b00944
|
[19] |
XIA T, LI N, ZHANG Y L, et al. Directional heat dissipation across the interface in anatase-rutile nanocomposites[J]. ACS Applied Materials & Interfaces, 2013, 5(20): 9883-9890.
|
[20] |
TAUC J, GRIGOROVICI R, VANCU A. Optical properties and electronic structure of amorphous germanium[J]. Physica Status Solidi (b), 1966, 15(2): 627-637. doi: 10.1002/pssb.19660150224
|
[21] |
MATSUMOTO Y. Energy positions of oxide semiconductors and photocatalysis with iron complex oxides[J]. Journal of Solid State Chemistry, 1996, 126(2): 227-234. doi: 10.1006/jssc.1996.0333
|
[22] |
TRASATTI S. The absolute electrode potential: An explanatory note (Recommendations 1986)[J]. Pure and Applied Chemistry, 1986, 58(7): 955-966. doi: 10.1351/pac198658070955
|
[23] |
ZHOU H L, QU Y Q, ZEID T, et al. Towards highly efficient photocatalysts using semiconductor nanoarchitectures[J]. Energy & Environmental Science, 2012, 5(5): 6732-6743.
|