[1] |
ALI M, AWAN F U R, ALI M, et al. Effect of humic acid on CO2-wettability in sandstone formation[J]. Journal of Colloid and Interface Science, 2021, 588: 315-325. doi: 10.1016/j.jcis.2020.12.058
|
[2] |
SUDOH R, ISLAM M S, SAZAWA K, et al. Removal of dissolved humic acid from water by coagulation method using polyaluminum chloride (PAC) with calcium carbonate as neutralizer and coagulant aid[J]. Journal of Environmental Chemical Engineering, 2015, 3(2): 770-774. doi: 10.1016/j.jece.2015.04.007
|
[3] |
ŠíR M, PODHOLA M, PATOČKA T, et al. The effect of humic acids on the reverse osmosis treatment of hazardous landfill leachate[J]. Journal of Hazardous Materials, 2012, 207-208: 86-90. doi: 10.1016/j.jhazmat.2011.08.079
|
[4] |
赵凯, 杨春风, 孙境求, 等. 电絮凝─超滤协同去除水中的腐殖酸[J]. 环境工程学报, 2017, 11(7): 3965-3970. doi: 10.12030/j.cjee.201605058
|
[5] |
王文东, 张轲, 范庆海, 等. 紫外辐射对腐殖酸溶液理化性质及其混凝性能的影响[J]. 环境科学, 2016, 37(3): 994-999.
|
[6] |
WANG J, LI H R, LI Y H, et al. Speciation, distribution, and bioavailability of soil selenium in the Tibetan Plateau Kashin–Beck disease area—a case study in Songpan County, Sichuan Province, China[J]. Biological Trace Element Research, 2013, 156(1-3): 367-375. doi: 10.1007/s12011-013-9822-5
|
[7] |
ZHU R C, DIAZ A J, SHEN Y, et al. Mechanism of humic acid fouling in a photocatalytic membrane system[J]. Journal of Membrane Science, 2018, 563: 531-540. doi: 10.1016/j.memsci.2018.06.017
|
[8] |
LI S, YANG Y L, ZHENG H S, et al. Advanced oxidation process based on hydroxyl and sulfate radicals to degrade refractory organic pollutants in landfill leachate[J]. Chemosphere, 2022, 297: 134214. doi: 10.1016/j.chemosphere.2022.134214
|
[9] |
OSKOEI V, DEHGHANI M H, NAZMARA S, et al. Removal of humic acid from aqueous solution using UV/ZnO nano-photocatalysis and adsorption[J]. Journal of Molecular Liquids, 2016, 213: 374-380. doi: 10.1016/j.molliq.2015.07.052
|
[10] |
YE W Y, LIU H W, JIANG M, et al. Sustainable management of landfill leachate concentrate through recovering humic substance as liquid fertilizer by loose nanofiltration[J]. Water Research, 2019, 157: 555-563. doi: 10.1016/j.watres.2019.02.060
|
[11] |
BYRNE C, SUBRAMANIAN G, PILLAI S C. Recent advances in photocatalysis for environmental applications[J]. Journal of Environmental Chemical Engineering, 2018, 6(3): 3531-3555. doi: 10.1016/j.jece.2017.07.080
|
[12] |
RAJCA M, BODZEK M. Kinetics of fulvic and humic acids photodegradation in water solutions[J]. Separation and Purification Technology, 2013, 120: 35-42. doi: 10.1016/j.seppur.2013.09.019
|
[13] |
WANG J Q, WANG Z H, WANG W, et al. Synthesis, modification and application of titanium dioxide nanoparticles: a review[J]. Nanoscale, 2022, 14(18): 6709-6734. doi: 10.1039/D1NR08349J
|
[14] |
YANG H Y, ZHOU J Y, DUAN Z J, et al. Amorphous TiO2 beats P25 in visible light photo-catalytic performance due to both total-internal-reflection boosted solar photothermal conversion and negative temperature coefficient of the forbidden bandwidth[J]. Applied Catalysis B: Environmental, 2022, 310: 121299. doi: 10.1016/j.apcatb.2022.121299
|
[15] |
TIAN J, LENG Y H, ZHAO Z H, et al. Carbon quantum dots/hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation[J]. Nano Energy, 2015, 11: 419-427. doi: 10.1016/j.nanoen.2014.10.025
|
[16] |
ZHAO Z, REISCHAUER S, PIEBER B, et al. Carbon dot/TiO2 nanocomposites as photocatalysts for metallaphotocatalytic carbon–heteroatom cross-couplings[J]. Green Chemistry, 2021, 23(12): 4524-4530. doi: 10.1039/D1GC01284C
|
[17] |
LI Y R, LIU Z M, WU Y C, et al. Carbon dots-TiO2 nanosheets composites for photoreduction of Cr(VI) under sunlight illumination: Favorable role of carbon dots[J]. Applied Catalysis B: Environmental, 2018, 224: 508-517. doi: 10.1016/j.apcatb.2017.10.023
|
[18] |
SHEN S, CHEN K L, WANG H B, et al. Construction of carbon dots-deposited TiO2 Photocatalysts with visible-light-induced photocatalytic activity for the elimination of pollutants[J]. Diamond and Related Materials, 2022, 124: 108896. doi: 10.1016/j.diamond.2022.108896
|
[19] |
ALTMANN J, MASSA L, SPERLICH A, et al. UV254 absorbance as real-time monitoring and control parameter for micropollutant removal in advanced wastewater treatment with powdered activated carbon[J]. Water Research, 2016, 94: 240-245. doi: 10.1016/j.watres.2016.03.001
|
[20] |
CHEN W M, LI Q B. Elimination of UV-quenching substances from MBR- and SAARB-treated mature landfill leachates in an ozonation process: A comparative study[J]. Chemosphere, 2020, 242: 125256. doi: 10.1016/j.chemosphere.2019.125256
|
[21] |
KATSUMATA H, SADA M, KANECO S, et al. Humic acid degradation in aqueous solution by the photo-Fenton process[J]. Chemical Engineering Journal, 2008, 137(2): 225-230. doi: 10.1016/j.cej.2007.04.019
|
[22] |
ZHOU T S, LI L, LI J H, et al. Electrochemically reduced TiO2 photoanode coupled with oxygen vacancy-rich carbon quantum dots for synergistically improving photoelectrochemical performance[J]. Chemical Engineering Journal, 2021, 425: 131770. doi: 10.1016/j.cej.2021.131770
|
[23] |
SHEN S, WANG H B, FU J J. A nanoporous Three-dimensional graphene aerogel doped with a carbon quantum Dot-TiO2 composite that exhibits superior activity for the catalytic photodegradation of organic pollutants[J]. Applied Surface Science, 2021, 569.
|
[24] |
XU L, BAI X, GUO L K, et al. Facial fabrication of carbon quantum dots (CDs)-modified N-TiO2-x nanocomposite for the efficient photoreduction of Cr(VI) under visible light[J]. Chemical Engineering Journal, 2019, 357: 473-486. doi: 10.1016/j.cej.2018.09.172
|
[25] |
AMINI TAPOUK F, PADERVAND S, YAGHMAEIAN K, et al. Synthesis of PAC-LaFeO3-Cu nanocomposites via sol-gel method for the photo catalytic degradation of humic acids under visible light irradiation[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105557. doi: 10.1016/j.jece.2021.105557
|
[26] |
XUE G, LIU H, CHEN Q, et al. Synergy between surface adsorption and photocatalysis during degradation of humic acid on TiO2/activated carbon composites[J]. Journal of Hazardous Materials, 2011, 186(1): 765-772. doi: 10.1016/j.jhazmat.2010.11.063
|
[27] |
ZHANG H, LV X J, LI Y M, et al. P25-Graphene Composite as a High Performance Photocatalyst[J]. ACS Nano, 2010, 4(1): 380-386. doi: 10.1021/nn901221k
|
[28] |
NI L F, WANG T, WANG H, et al. An anaerobic-applicable Bi2MoO6/CuS heterojunction modified photocatalytic membrane for biofouling control in anammox MBRs: generation and contribution of reactive species[J]. Chemical Engineering Journal, 2022, 429: 132457. doi: 10.1016/j.cej.2021.132457
|
[29] |
ZHANG J J, LIU Q R, WANG J H, et al. Facile preparation of carbon quantum dots/TiO2 composites at room temperature with improved visible-light photocatalytic activity[J]. Journal of Alloys and Compounds, 2021, 869: 159389. doi: 10.1016/j.jallcom.2021.159389
|
[30] |
MEHRABANPOUR N, NEZAMZADEH-EJHIEH A, GHATTAVI S, et al. A magnetically separable clinoptilolite supported CdS-PbS photocatalyst: Characterization and photocatalytic activity toward cefotaxime[J]. Applied Surface Science, 2023, 614: 156252. doi: 10.1016/j.apsusc.2022.156252
|
[31] |
PENG P, CHEN Z, LI X M, et al. Biomass-derived carbon quantum dots modified Bi2MoO6/Bi2S3 heterojunction for efficient photocatalytic removal of organic pollutants and Cr(VI)[J]. Separation and Purification Technology, 2022, 291: 120901. doi: 10.1016/j.seppur.2022.120901
|
[32] |
马双念, 宋卫锋, 杨佐毅, 等. LaCoO3催化过一硫酸盐高效降解阿特拉津的性能及机理[J]. 环境工程学报, 2022, 16(10): 3266-3280. doi: 10.12030/j.cjee.202205045
|
[33] |
KHATAEE A, SADEGHI RAD T, NIKZAT S, et al. Fabrication of NiFe layered double hydroxide/reduced graphene oxide (NiFe-LDH/rGO) nanocomposite with enhanced sonophotocatalytic activity for the degradation of moxifloxacin[J]. Chemical Engineering Journal, 2019, 375: 122102. doi: 10.1016/j.cej.2019.122102
|
[34] |
付权超, 许路, 刘沛华, 等. FeTiO2-x可见光活化过硫酸盐降解双酚A的作用机制[J]. 中国环境科学, 2023, 43(6): 2841-2852. doi: 10.3969/j.issn.1000-6923.2023.06.018
|
[35] |
王菲凤. N掺杂TiO2纳米材料可见光催化性能及其降解水中腐殖酸[J]. 环境工程, 2017, 35(1): 6-10+58.
|
[36] |
冯宝瑞, 刘海成, 李阳, 等. Fe3O4@SiO2@TiO2-AC光催化降解水源水中腐殖酸[J]. 工业水处理, 2020, 40(8): 55-59+74.
|
[37] |
CHEN P, WANG F, CHEN Z-F, et al. Study on the photocatalytic mechanism and detoxicity of gemfibrozil by a sunlight-driven TiO2/carbon dots photocatalyst: The significant roles of reactive oxygen species[J]. Applied Catalysis B: Environmental, 2017, 204: 250-259. doi: 10.1016/j.apcatb.2016.11.040
|
[38] |
HAMILTON J W J, BYRNE J A, DUNLOP P S M, et al. Evaluating the mechanism of visible light activity for N, F-TiO2 using photoelectrochemistry[J]. The Journal of Physical Chemistry C, 2014, 118(23): 12206-12215. doi: 10.1021/jp4120964
|
[39] |
CAI J B, LI H, FENG K, et al. Low-temperature degradation of humic acid via titanium zirconium oxide@copper single-atom activating oxygen: Mechanism and pathways[J]. Chemical Engineering Journal, 2022, 450: 138239. doi: 10.1016/j.cej.2022.138239
|
[40] |
WANG Q, WANG T, LAILA N, et al. Carbon dots/TiO2 enhanced visible light-assisted photocatalytic of leachate: Simultaneous effects and Mechanism insights[J]. Water Research, 2023, 245: 120659. doi: 10.1016/j.watres.2023.120659
|
[41] |
YU H J, ZHAO Y F, ZHOU C, et al. Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A, 2014, 2(10): 3344. doi: 10.1039/c3ta14108j
|
[42] |
SUI Y L, WU L, ZHONG S K, et al. Carbon quantum dots/TiO2 nanosheets with dominant (001) facets for enhanced photocatalytic hydrogen evolution[J]. Applied Surface Science, 2019, 480: 810-816. doi: 10.1016/j.apsusc.2019.03.028
|