[1] HAYYAN M, HASHIM M A, ALNASHEF I M. Superoxide ion: generation and chemical implications[J]. Chemical Review, 2016, 116(5): 3029-3085. doi: 10.1021/acs.chemrev.5b00407
[2] GUEMOURI L, ARTUR Y, HERBETH B, et al. Biological variability of superoxide dismutase, glutathione peroxidase, and catalase in blood[J]. Clinical Chemistry, 1991, 37(11): 1932-1937. doi: 10.1093/clinchem/37.11.1932
[3] CHEN X, WANG J, WU H, et al. Trade-off effect of dissolved organic matter on degradation and transformation of micropollutants: A review in water decontamination[J]. Journal of Hazardous Materials, 2023, 450: 130996. doi: 10.1016/j.jhazmat.2023.130996
[4] SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review[J]. Biotechnology Advances, 2010, 28(6): 882-894. doi: 10.1016/j.biotechadv.2010.08.001
[5] RZYMSKI P, KLIMASZYK P, JURCZAK T, et al. Oxidative stress, programmed cell death and Microcystin release in Microcystis aeruginosain response to daphnia grazers[J]. Frontiers in Microbiology, 2020, 11: 01201. doi: 10.3389/fmicb.2020.01201
[6] DIAZ J M, PLUMMER S. Production of extracellular reactive oxygen species by phytoplankton: past and future directions[J]. Journal of Plankton Research, 2018, 40(6): 655-666.
[7] 秦兵维, 聂麦茜, 郭永华, 等. 预水解发酵碳源对铜绿假单胞菌NY3产鼠李糖脂特性及应用效能的影响研究[J]. 微生物学杂志, 2019, 39(2): 25-30. doi: 10.3969/j.issn.1005-7021.2019.02.004
[8] 李泽, 梁金松, 王爱杰. 新型锰氧化菌株Pseudoxanthomonas mexicana S5-3_5X的分离及锰氧化机理研究[J]. 环境科学学报, 2022, 42(8): 127-136.
[9] HANSEL C M, DIAZ J M. Production of extracellular reactive oxygen species by marine biota[J]. Annual Review of Marine Science, 2021, 13: 177-200. doi: 10.1146/annurev-marine-041320-102550
[10] 李芸, 刘发龙, 王巧晗, 等. 藻际微环境中藻体与微生物相互作用[J]. 河北渔业, 2019(3): 43-48. doi: 10.3969/j.issn.1004-6755.2019.03.012
[11] RAMANAN R, KIM B-H, CHO D-H, et al. Algae–bacteria interactions: evolution, ecology and emerging applications[J]. Biotechnology Advances, 2016, 34(1): 14-29. doi: 10.1016/j.biotechadv.2015.12.003
[12] GUO Z, TONG Y W. The interactions between Chlorella vulgaris and algal symbiotic bacteria under photoautotrophic and photoheterotrophic conditions[J]. Journal of Applied Phycology, 2014, 26(3): 1483-1492. doi: 10.1007/s10811-013-0186-1
[13] 徐佳杰, 谢周云, 俞楠, 杨国靖. 基于文献计量的菌藻共生技术研究现状及发展趋势[J]. 环境科学学报, 2023, 43(7): 401-412.
[14] CHEN S, CHEN J, ZHANG L, et al. Biophotoelectrochemical process co-driven by dead microalgae and live bacteria[J]. The ISME Journal, 2023, 17(5): 712-719. doi: 10.1038/s41396-023-01383-3
[15] 刘雪萍, 张绍勇, 陈瑶瑶, 等. 南太湖沉积物中可培养放线菌的分离、鉴定及其抑菌活性[J]. 中国饲料, 2024(7): 11-19.
[16] LI C C, WU W L. Analysis of the driving mechanism of water environment evolution and algal bloom warning signals in Tai Lake[J]. Water, 2023, 15(6). LI C C, WU W L. Analysis of the driving mechanism of water environment evolution and algal bloom warning signals in Tai Lake[J]. Water, 2023, 15(6).
[17] VAN LE V, SRIVASTAVA A, KO S-R, et al. Microcystis colony formation: Extracellular polymeric substance, associated microorganisms, and its application[J]. Bioresource Technology, 2022, 360: 127610. doi: 10.1016/j.biortech.2022.127610
[18] 刘明. 基于光合细菌红假单胞菌的废水处理与协同固碳作用研究[J]. 生物质化学工程, 2024, 58(2): 47-54. doi: 10.3969/j.issn.1673-5854.2024.02.006
[19] 李颖, 张榆霞, 等. 关于用藻密度对蓝藻水华程度进行分级评价的方法和运用[J]. 环境与可持续发展, 2014, 39(2): 67-68. doi: 10.3969/j.issn.1673-288X.2014.02.020
[20] HE Z F, LI Q Q, XU Y, et al. Production of extracellular superoxide radical in microorganisms and its environmental implications: A review[J]. Environmental Pollution, 2023, 338: 122563. doi: 10.1016/j.envpol.2023.122563
[21] 宋晓辰, 李凤梅, 等. 植物乳杆菌NDC75017抗氧化活性研究[J]. 食品科学, 2014, 35(21): 106-112. doi: 10.7506/spkx1002-6630-201421021
[22] FRENKEL A, GAFFRON H, BATTLEY E H. Photosynthesis and photoreduction buy a species of blue-green algae[J]. Biological Bulletin, 1949, 97(2): 269.
[23] 辛波, 夏秋瑜, 等. 金属离子对椰花汁清除超氧阴离子能力的影响[J]. 热带作物学报, 2009, 30(8): 1069-1074. doi: 10.3969/j.issn.1000-2561.2009.08.004
[24] GAO Q, LIU Z H, WU J L, et al. Foliar application is an effective method for incorporating selenium into peanut leaf proteins with antioxidant activities[J]. Food Research International, 2019, 126: 108617. doi: 10.1016/j.foodres.2019.108617
[25] OZFIDAN-KONAKCI C, YILDIZTUGAY E, BAHTIYAR M, et al. The humic acid-induced changes in the water status, chlorophyll fluorescence and antioxidant defense systems of wheat leaves with cadmium stress[J]. Ecotoxicology and Environmental Safety, 2018, 155: 66-75. doi: 10.1016/j.ecoenv.2018.02.071
[26] 宋鸽. 腐殖质参与植物非生物胁迫应答作用机制的研究进展[J]. 中国农学通报, 2023, 39(15): 59-68. doi: 10.11924/j.issn.1000-6850.casb2022-0324
[27] MEHTA D, SHARMA P, SINGH S. ATP-triggered, selective superoxide radical generating oxidase-mimetic cerium oxide nanozyme exhibiting efficient antibacterial activity at physiological pH[J]. Colloids and Surfaces B: Biointerfaces, 2023, 231: 113531. doi: 10.1016/j.colsurfb.2023.113531
[28] PEETERS S H, DE JONGE M I. For the greater good: Programmed cell death in bacterial communities[J]. Microbiological Research, 2018, 207: 161-169. doi: 10.1016/j.micres.2017.11.016
[29] WANG J, LI R, LIU B, et al. Occurrence and distribution of lipophilic marine algal toxins in the coastal seawater of Southeast China and the South China Sea[J]. Marine Pollution Bulletin, 2023, 187: 114584. doi: 10.1016/j.marpolbul.2023.114584
[30] FUJITA T, YAMAMOTO Y, YAMAGATA Y, et al. Elimination of inhibitor for NADH activities[J]. Journal of the American Heart Association, 2014, 3(1). FUJITA T, YAMAMOTO Y, YAMAGATA Y, et al. Elimination of inhibitor for NADH activities[J]. Journal of the American Heart Association, 2014, 3(1).
[31] BORDBAR Z, KAVOOSI G, BALOTF S, et al. Differential expression of NADH oxidase, superoxide dismutase, and catalase in wheat seedling in response to Zataria multiflora essential oil incorporated into polyvinyl alcohol dispersion[J]. Journal of Agricultural Sience and Technology, 2017, 19(1): 145-155.
[32] OLEK R A, ANTOSIEWICZ J, CAULINI G C, et al. Effect of NADH on the redox state of human hemoglobin[J]. Clinica Chimica Acta, 2002, 324(1-2): 129-134. doi: 10.1016/S0009-8981(02)00242-5
[33] ANDERSON A, LAOHAVISIT A, BLABY I K, et al. Exploiting algal NADPH oxidase for biophotovoltaic energy[J]. Plant Biotechnology Journal, 2015, 14(1): 22-28.
[34] CHEN Y, SHI J, WU Y, et al. NADH photosynthesis system with affordable electron supply and inhibited NADH oxidation[J]. Angewandte Chemie-internatioanl Edition, 2023, 62(42). CHEN Y, SHI J, WU Y, et al. NADH photosynthesis system with affordable electron supply and inhibited NADH oxidation[J]. Angewandte Chemie-internatioanl Edition, 2023, 62(42).