[1] AMELINE A, TAQUET M C, TERRADE J E, et al. Identification of chloramphenicol in human hair leading to a diagnosis of factitious disorder[J]. Clinical Toxicology, 2020, 58(9): 926-930.
[2] ELDER F C T, PROCTOR K, BARDEN R, et al. Spatiotemporal profiling of antibiotics and resistance genes in a river catchment: Human population as the main driver of antibiotic and antibiotic resistance gene presence in the environment[J]. Water Research, 2021, 203: 117533.
[3] AMBEKAR C S, CHEUNG B, LEE J, et al. Metabolism of chloramphenicol succinate in human bone marrow[J]. European Journal of Clinical Pharmacology, 2000, 56(5): 405-409.
[4] GUO N, MA X F, REN S J, et al. Mechanisms of metabolic performance enhancement during electrically assisted anaerobic treatment of chloramphenicol wastewater[J]. Water Research, 2019, 156: 199-207.
[5] LEVY S B, MARSHALL B. Antibacterial resistance worldwide: Causes, challenges and responses[J]. Nature Medicine, 2004, 10(12): S122-S129.
[6] DING Y C, JIANG W L, LIANG B, et al. UV photolysis as an efficient pretreatment method for antibiotics decomposition and their antibacterial activity elimination[J]. Journal of Hazardous Materials, 2020, 392: 122321.
[7] MURRAY I A, SHAW W V. O-Acetyltransferases for chloramphenicol and other natural products[J]. Antimicrobial Agents and Chemotherapy, 1997, 41(1): 1-6.
[8] ALCALA A, RAMIREZ G, SOLIS A, et al. Structural and functional characterization of three Type B and C chloramphenicol acetyltransferases from species[J]. Protein Science, 2020, 29(3): 695-710.
[9] LI N, HU Y, LU Y Z, et al. In-situ biogas sparging enhances the performance of an anaerobic membrane bioreactor (AnMBR) with mesh filter in low-strength wastewater treatment[J]. Applied Microbiology and Biotechnology, 2016, 100(13): 6081-6089.
[10] ZHU M, LI N, LU Y, et al. The performance and microbial communities of an anaerobic membrane bioreactor for treating fluctuating 2-chlorophenol wastewater[J]. Bioresource Technology, 2020, 317: 124001.
[11] GOLOVKO O, KUMAR V, FEDOROVA G, et al. Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant[J]. Chemosphere, 2014, 111: 418-426.
[12] KAYA Y, BACAKSIZ A M, BAYRAK H, et al. Treatment of chemical synthesis-based pharmaceutical wastewater in an ozonation-anaerobic membrane bioreactor (AnMBR) system[J]. Chemical Engineering Journal, 2017, 322: 293-301.
[13] LIANG B, CHENG H Y, KONG D Y, et al. Accelerated Reduction of Chlorinated Nitroaromatic Antibiotic Chloramphenicol by Biocathode[J]. Environmental Science & Technology, 2013, 47(10): 5353-5361.
[14] 马清佳, 田哲, 员建, 等. 9种抗生素对污泥高温厌氧消化的急性抑制[J]. 环境工程学报, 2018, 12(7): 2084-2093. doi: 10.12030/j.cjee.201712098
[15] LU J S, CHANG J S, LEE D J. Adding carbon-based materials on anaerobic digestion performance: A mini-review[J]. Bioresource Technology, 2020, 300: 122696.
[16] ZHU M C, LU Y Z, CHEN S W, et al. Carbon nano-onions acting as artificial pili enhance chloramphenicol degradation in an anaerobic membrane bioreactor[J]. Chemical Engineering Journal, 2023, 475: 146110.
[17] D’ AMORA M, RODIO M, BARTELMESS J, et al. Biocompatibility and biodistribution of functionalized carbon nano-onions (f-CNOs) in a vertebrate model[J]. Scientific Reports, 2016, 6(1): 33923.
[18] LIU L, LU Y, PU Y, et al. Highly sulfonated carbon nano-onions as an excellent nanofiller for the fabrication of composite proton exchange membranes with enhanced water retention and durability[J]. Journal of Membrane Science, 2021, 640: 119823.
[19] YIN X J, ZHAI J, HU W, et al. A fast start-up of the organotrophic anammox process inoculated with constructed wetland sediment[J]. Ecological Engineering, 2019, 138: 454-460.
[20] ELDER F C T, PASCOE B, WELLS S, et al. Stereoselective metabolism of chloramphenicol by bacteria isolated from wastewater, and the importance of stereochemistry in environmental risk assessments for antibiotics[J]. Water Research, 2022, 217: 118415.
[21] GUI C, CHEN J, XIE Q, et al. CytA, a reductase in the cytorhodin biosynthesis pathway, inactivates anthracycline drugs in[J]. Communications Biology, 2019, 2(1): 454.
[22] WEN W H, ZHANG Y, ZHANG Y Y, et al. Reductive inactivation of the hemiaminal pharmacophore for resistance against tetrahydroisoquinoline antibiotics[J]. Nature Communications, 2021, 12(1): 7085.
[23] LASSILA T, HOKKANEN J, AATSINK S M, et al. Toxicity of carboxylic acid-containing drugs: The role of acyl migration and CoA conjugation investigated[J]. Chemical Research in Toxicology, 2015, 28(12): 2292-2303.
[24] BIZERRA A M C, MONTENEGRO T G C, LEMOS T L G, et al. Enzymatic regioselective production of chloramphenicol esters[J]. Tetrahedron, 2011, 67(16): 2858-2862.
[25] GAUGAIN M, CHOTARD M P, HURTAUD P D, et al. Comprehensive validation of a liquid chromatography–tandem mass spectrometry method for the confirmation of chloramphenicol in urine including stability of the glucuronide conjugate and efficiency of deconjugation[J]. Journal of Chromatography B, 2016, 1011: 145-150.
[26] RONG Y, TU Y F, YIN T J, et al. Rapid intestinal glucuronidation and hepatic glucuronide recycling contributes significantly to the enterohepatic circulation of icaritin and its glucuronides in vivo[J]. Archives of Toxicology, 2020, 94(11): 3737-3749.
[27] MA X D, LIANG B, QI M Y, et al. Novel pathway for chloramphenicol catabolism in the activated sludge bacterial isolate sp. CAP-1[J]. Environmental Science & Technology, 2020, 54(12): 7591-7600.
[28] VON WINTERSDORFF C J H, PENDERS J, VAN NIEKERK J M, et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer[J]. Frontiers in Microbiology, 2016, 7: 173.
[29] GüNDOĞDU A, LONG Y B, VOLLMERHAUSEN T L, et al. Antimicrobial resistance and distribution of sul genes and integron-associated intI genes among uropathogenic Escherichia coli in Queensland, Australia[J]. Journal of Medical Microbiology, 2011, 60(11): 1633-1642.
[30] CHENG D L, NGO H H, GUO W S, et al. Anaerobic membrane bioreactors for antibiotic wastewater treatment: Performance and membrane fouling issues[J]. Bioresource Technology, 2018, 267: 714-724.
[31] 吉运, 邓宇, 杨爱江, 等. 氮氧自掺杂生物质多孔炭修饰阴极的生物电芬顿产电及其对氯霉素的降解性能[J]. 环境工程学报, 2022, 16(11): 3587-3595. doi: 10.12030/j.cjee.202201050
[32] 刘星鑫, 王安祺, 卓琼芳, 等. 改性Ti4O7阳极对氯霉素的高效电氧化降解[J]. 环境工程学报, 2023, 17(8): 2534-2543. doi: 10.12030/j.cjee.202303033
[33] 霍朝飞, 陈文燕, 张金凤, 等. 磁性山竹壳炭的制备及对氯霉素吸附性能[J]. 环境工程学报, 2023, 17(7): 2145-2157. doi: 10.12030/j.cjee.202302064
[34] 郑小清, 蒙德仲, 周新木. 废刀具中金刚石等有价物质的综合回收[J]. 江西化工, 2008(4): 197-199. doi: 10.3969/j.issn.1008-3103.2008.04.062
[35] 张卫珂, 付俊杰, 常杰, 等. 纳米洋葱碳的制备及其纯化研究[J]. 新型炭材料, 2014, 29(5): 398-403.