[1] |
YU C, LI Z, XU Z, et al. Lake recovery from eutrophication: Quantitative response of trophic states to anthropogenic influences[J]. Ecological Engineering, 2020, 143: 105697. doi: 10.1016/j.ecoleng.2019.105697
|
[2] |
许铭宇, 刘雯, 谭广文, 等. 生态净水系统对富营养化园林水体的净化效应研究[J]. 长江科学院院报, 2019, 36(4): 27-31.
|
[3] |
吴香香, 李大鹏, 贾海峰, 等. 江南地区缓流水体中微塑料的表现规律[J]. 中国给水排水, 2022, 38(3): 62-66.
|
[4] |
伍燕南, 王跃, 陈德超. 苏州园林水体生态化治理之路探讨[J]. 环境与可持续发展, 2012, 37(5): 87-91.
|
[5] |
王桢桢, 潘杨, 翟笑伟. 封闭景观水体的表观污染机制研究[J]. 环境工程, 2015, 33(4): 9-13.
|
[6] |
李飞鹏, 张海平, 陈玲. 小型封闭水体环境因子与叶绿素a的时空分布及相关性研究[J]. 环境科学, 2013, 34(10): 3854-3861.
|
[7] |
WEN Y, CHEN Y, ZHENG N, et al. Effects of plant biomass on nitrate removal and transformation of carbon sources in subsurface-flow constructed wetlands[J]. Bioresource Technology, 2010, 101(19): 7286-7292. doi: 10.1016/j.biortech.2010.04.068
|
[8] |
赵联芳, 朱伟, 高青. 补充植物碳源提高人工湿地脱氮效率[J]. 解放军理工大学学报(自然科学版), 2009, 10(6): 644-649.
|
[9] |
NI Z, WU X, LI L, et al. Pollution control and in situ bioremediation for lake aquaculture using an ecological dam[J]. Journal of Cleaner Production, 2018, 172: 2256-2265. doi: 10.1016/j.jclepro.2017.11.185
|
[10] |
TABASSUM S, LI Y, CHI L, et al. Efficient nitrification treatment of comprehensive industrial wastewater by using Novel Mass Bio System[J]. Journal of Cleaner Production, 2018, 172: 368-384. doi: 10.1016/j.jclepro.2017.10.022
|
[11] |
RUIZ P, VIDAL J M, SEPÚLVEDA D, et al. Overview and future perspectives of nitrifying bacteria on biofilters for recirculating aquaculture systems[J]. Reviews in Aquaculture, 2020, 12(3): 1478-1494. doi: 10.1111/raq.12392
|
[12] |
周朋. 蜡基多孔材料的制备及其微生物污水处理性能研究[D]. 长春: 长春工业大学, 2022.
|
[13] |
WANG Y, ZHAO Y, JI M, et al. Nitrification recovery behavior by bio-accelerators in copper-inhibited activated sludge system[J]. Bioresource Technology, 2015, 192: 748-755. doi: 10.1016/j.biortech.2015.06.015
|
[14] |
张睿婷, 胡昕欣, 金睿, 等. 2019年苏州市10处湿地中水体的透明度及其影响因素研究[J]. 湿地科学, 2021, 19(3): 331-341.
|
[15] |
昂安坤. 河道水感官品质分析与提升技术研究[D]. 上海: 上海交通大学, 2020.
|
[16] |
庄媛, 高宇, 姜财起, 等. 城市小型景观水体水环境质量评价[J]. 中国城市林业, 2023, 21(3): 133-138.
|
[17] |
吕晓冰, 李茹莹. 固定化微生物对低温河水脱氮效果的中试研究[J]. 环境科学学报, 2022, 42(7): 159-169.
|
[18] |
JIANG B, LI Y, WANG H, et al. Application of a new type of Si–Al porous clay material as a solid phase support for immobilizing Acidovorax sp. PM3 to treat domestic sewage[J]. Adsorption Science & Technology, 2019, 37(9-10): 729-744.
|
[19] |
方玲, 陈敏, 林玉虎, 等. 十种常见园林树种凋落物分解特性[J]. 北方园艺, 2022(5): 75-82.
|
[20] |
MEZITI A, TSEMENTZI D, KORMAS K Ar, et al. Anthropogenic effects on bacterial diversity and function along a river-to-estuary gradient in Northwest Greece revealed by metagenomics[J]. Environmental Microbiology, 2016, 18(12): 4640-4652. doi: 10.1111/1462-2920.13303
|
[21] |
CRUMP B C, PETERSON B J, RAYMOND P A, et al. Circumpolar synchrony in big river bacterioplankton[J]. Proceedings of the National Academy of Sciences, 2009, 106(50): 21208-21212. doi: 10.1073/pnas.0906149106
|
[22] |
徐超, 张军毅, 朱冰川, 等. 夏季太湖梅梁湾水体中细菌的群落结构[J]. 环境监控与预警, 2015, 7(1): 37-40.
|
[23] |
WANG P, ZHAO J, XIAO H, et al. Bacterial community composition shaped by water chemistry and geographic distance in an anthropogenically disturbed river[J]. Science of The Total Environment, 2019, 655: 61-69. doi: 10.1016/j.scitotenv.2018.11.234
|
[24] |
MAYER F, MÜLLER V. Adaptations of anaerobic archaea to life under extreme energy limitation[J]. FEMS Microbiology Reviews, 2014, 38(3): 449-472. doi: 10.1111/1574-6976.12043
|
[25] |
薛银刚, 刘菲, 周璐璐, 等. 基于高通量测序的工业园区地下水和土壤细菌群落结构比较研究[J]. 生态毒理学报, 2017, 12(6): 107-115.
|
[26] |
POWELL L C, PRITCHARD M F, FERGUSON E L, et al. Targeted disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate oligosaccharides[J]. npj Biofilms and Microbiomes, 2018, 4(1): 1-10. doi: 10.1038/s41522-017-0044-z
|
[27] |
ZHANG L, HUANG X, ZHOU J, et al. Active predation, phylogenetic diversity, and global prevalence of myxobacteria in wastewater treatment plants[J]. The ISME Journal, 2023, 17(5): 671-681. doi: 10.1038/s41396-023-01378-0
|
[28] |
LIU M, CHEN Y, WU Y, et al. Synergistic Action of Plants and Microorganism in Integrated Floating Bed on Eutrophic Brackish Water Purification in Coastal Estuary Areas[J]. Frontiers in Marine Science, 2021, 8.
|
[29] |
LINDH M V, LEFÉBURE R, DEGERMAN R, et al. Consequences of increased terrestrial dissolved organic matter and temperature on bacterioplankton community composition during a Baltic Sea mesocosm experiment[J]. AMBIO, 2015, 44(3): 402-412.
|
[30] |
王慎, 张思思, 许尤, 等. 不同水温分层水库沉积物间隙水营养盐垂向分布与细菌群落结构的关系[J]. 环境科学, 2019, 40(6): 2753-2763.
|
[31] |
张菲, 田伟, 孙峰, 等. 丹江口库区表层浮游细菌群落组成与PICRUSt功能预测分析[J]. 环境科学, 2019, 40(3): 1252-1260.
|
[32] |
ZHANG Q, FU J J, WU Q Y, et al. Build the expressway for the salt-tolerant anammox process: Acclimation strategy tells the story[J]. Journal of Cleaner Production, 2021, 278: 123921. doi: 10.1016/j.jclepro.2020.123921
|
[33] |
鲁翠翠, 蔡文倩, 张翠霞, 等. 植物与微生物协同净化黑臭水体的脱氮性能[J]. 环境科学与技术, 2022, 45(12): 78-88.
|
[34] |
李娜英, 韩智勇, 王双超, 等. 多污染源作用下填埋场地下水微生物群落分析[J]. 中国环境科学, 2020, 40(11): 4900-4910.
|
[35] |
YANG B, WANG Y, LU Y, et al. Effects of simultaneous denitrification and desulfurization and changes of microbial community structure with corncob solid slow-release carbon source under different S/N ratios[J]. Journal of Water Process Engineering, 2022, 47: 102737. doi: 10.1016/j.jwpe.2022.102737
|
[36] |
YUAN M M, GUO X, WU L, et al. Climate warming enhances microbial network complexity and stability[J]. Nature Climate Change, 2021, 11(4): 343-348. doi: 10.1038/s41558-021-00989-9
|
[37] |
BANERJEE S, SCHLAEPPI K, HEIJDEN M G A van der. Keystone taxa as drivers of microbiome structure and functioning[J]. Nature Reviews Microbiology, 2018, 16(9): 567-576. doi: 10.1038/s41579-018-0024-1
|
[38] |
SHAO Q, LIN Z, ZHOU C, et al. Succession of bacterioplankton communities over complete Gymnodinium-diatom bloom cycles[J]. Science of The Total Environment, 2020, 709: 135951. doi: 10.1016/j.scitotenv.2019.135951
|
[39] |
张雅洁, 李珂, 朱浩然, 等. 北海湖微生物群落结构随季节变化特征[J]. 环境科学, 2017, 38(8): 3319-3329.
|
[40] |
KESHRI J, PRADEEP RAM A S, SIME-NGANDO T. Distinctive patterns in the taxonomical resolution of bacterioplankton in the sediment and pore waters of contrasted freshwater lakes[J]. Microbial Ecology, 2018, 75(3): 662-673. doi: 10.1007/s00248-017-1074-z
|
[41] |
朱金山, 秦海兰, 孙启耀, 等. 冬季小流域水体微生物多样性及影响因素[J]. 环境科学, 2020, 41(11): 5016-5026.
|
[42] |
杨艳, 王浩, 李凯航, 等. 长江三峡上游水域细菌群落结构与功能预测[J]. 微生物学报, 2022, 62(4): 1401-1415.
|
[43] |
ZHANG M, LI Y, SUN Q, et al. Correlations of functional genes involved in methane, nitrogen and sulfur cycling in river sediments[J]. Ecological Indicators, 2020, 115: 106411. doi: 10.1016/j.ecolind.2020.106411
|
[44] |
FERNANDES S, MAZUMDAR A, BHATTACHARYA S, et al. Enhanced carbon-sulfur cycling in the sediments of Arabian Sea oxygen minimum zone center[J]. Scientific Reports, 2018, 8(1): 8665. doi: 10.1038/s41598-018-27002-2
|
[45] |
杨婉静, 潘杨, 陈越, 等. 胞外聚合物在生物膜同步去除/富集磷酸盐系统中的作用[J]. 环境科学学报, 2021, 41(9): 3437-3445. doi: 10.13671/j.hjkxxb.2021.0086
|