[1] ZHAO M M, QU D, SHEN W D, et al. Effects of dissolved organic matter from different sources on Microcystis aeruginosa growth and physiological characteristics[J]. Ecotoxicology and Environmental Safety, 2019, 176: 125-131. doi: 10.1016/j.ecoenv.2019.03.085
[2] PAERL H W, GARDNER W S, HAVENS K E, et al. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients[J]. Harmful Algae, 2016, 54: 213-222. doi: 10.1016/j.hal.2015.09.009
[3] KIM W, KIM M, HONG M, et al. Killing effect of deinoxanthins on cyanobloom-forming Microcystis aeruginosa: Eco-friendly production and specific activity of deinoxanthins[J]. Environmental Research, 2021, 200: 111455. doi: 10.1016/j.envres.2021.111455
[4] SANO D, ISHIFUJI S, SATO Y, et al. Identification and characterization of coagulation inhibitor proteins derived from Cyanobacterium Microcystis aeruginosa[J]. Chemosphere, 2011, 82(8): 1096-1102. doi: 10.1016/j.chemosphere.2010.12.005
[5] SUN S Q, TANG Q X, XU H, et al. A comprehensive review on the photocatalytic inactivation of Microcystis aeruginosa: Performance, development, and mechanisms[J]. Chemosphere, 2023, 312: 137239. doi: 10.1016/j.chemosphere.2022.137239
[6] XIN H J, YANG S, TANG Y L, et al. Mechanisms and performance of calcium peroxide-enhanced Fe(ii) coagulation for treatment of Microcystis aeruginosa-laden water[J]. Environmental Science:Water Research & Technology, 2020, 6(5): 1272-1285.
[7] KO S R, LEE Y K, SRIVASTAVA A, et al. The selective inhibitory activity of a fusaricidin derivative on a bloom-forming Cyanobacterium, Microcystis sp[J]. Journal of Microbiology and Biotechnology, 2019, 29(1): 59-65. doi: 10.4014/jmb.1804.04031
[8] KONG Y, ZOU P, YANG Q, et al. Physiological responses of Microcystis aeruginosa under the stress of antialgal actinomycetes[J]. Journal of Hazardous Materials, 2013, 262: 274-280. doi: 10.1016/j.jhazmat.2013.08.032
[9] LIU H L, GUO X L, LIU L, et al. Simultaneous microcystin degradation and Microcystis aeruginosa inhibition with the single enzyme microcystinase A[J]. Environmental Science & Technology, 2020, 54(14): 8811-8820.
[10] MEYER N, BIGALKE A, KAULFUß A, et al. Strategies and ecological roles of algicidal bacteria[J]. FEMS Microbiology Reviews, 2017, 41(6): 880-899. doi: 10.1093/femsre/fux029
[11] SUN S Q, HU S S, ZHANG B, et al. Allelopathic effects and potential allelochemical of Sargassum fusiforme on red tide microalgae Heterosigma akashiwo[J]. Marine Pollution Bulletin, 2021, 170: 112673. doi: 10.1016/j.marpolbul.2021.112673
[12] MATTHIJS H C P, JANČULA D, VISSER P M, et al. Existing and emerging cyanocidal compounds: New perspectives for cyanobacterial bloom mitigation[J]. Aquatic Ecology, 2016, 50(3): 443-460. doi: 10.1007/s10452-016-9577-0
[13] ZHANG X L, HU X G, WU H, et al. Persistence and recovery of ZIF-8 and ZIF-67 phytotoxicity[J]. Environmental Science & Technology, 2021, 55(22): 15301-15312.
[14] RASULI L, DEHGHANI M H, ALIMOHAMMADI M, et al. Mesoporous metal organic frameworks functionalized with the amino acids as advanced sorbents for the removal of bacterial endotoxins from water: Optimization, regression and kinetic models[J]. Journal of Molecular Liquids, 2021, 339: 116801. doi: 10.1016/j.molliq.2021.116801
[15] YANG W X, HAN Y, LI C H, et al. Shapeable three-dimensional CMC aerogels decorated with Ni/Co-MOF for rapid and highly efficient tetracycline hydrochloride removal[J]. Chemical Engineering Journal, 2019, 375: 122076. doi: 10.1016/j.cej.2019.122076
[16] GAO Q A, WEI Y Y, WANG L L, et al. Three novel Co(ii)-based MOFs: Syntheses, structural diversity, and adsorption properties[J]. CrystEngComm, 2022, 24(39): 6854-6864. doi: 10.1039/D2CE01085B
[17] HU L J, CHEN J F, WEI Y S, et al. Photocatalytic degradation effect and mechanism of Karenia mikimotoi by non-noble metal modified TiO2 loading onto copper metal organic framework (SNP-TiO2@Cu-MOF) under visible light[J]. Journal of Hazardous Materials, 2023, 442: 130059. doi: 10.1016/j.jhazmat.2022.130059
[18] ZHAO J, LYU C Y, ZHANG R, et al. Self-cleaning and regenerable nano zero-valent iron modified PCN-224 heterojunction for photo-enhanced radioactive waste reduction[J]. Journal of Hazardous Materials, 2023, 442: 130018. doi: 10.1016/j.jhazmat.2022.130018
[19] RANA L K, KAUR P, MARIS T, et al. An insight into sensitive detection of metal ions using a novel cobalt MOF: Single crystal, photoluminescence, and theoretical studies[J]. CrystEngComm, 2022, 24(30): 5460-5473. doi: 10.1039/D2CE00385F
[20] CAI C J, FAN G D, DU B H, et al. Metal-organic-framework-based photocatalysts for microorganism inactivation: A review[J]. Catalysis Science & Technology, 2022, 12(12): 3767-3777.
[21] LI Y L, XU Z T, WANG W X. Effective flocculation of harmful algae Microcystis aeruginosa by nanoscale metal-organic framework NH2-MIL-101(Cr)[J]. Chemical Engineering Journal, 2022, 433: 134584. doi: 10.1016/j.cej.2022.134584
[22] MARTÍN-BETANCOR K, AGUADO S, RODEA-PALOMARES I, et al. Co, Zn and Ag-MOFs evaluation as biocidal materials towards photosynthetic organisms[J]. Science of the Total Environment, 2017, 595: 547-555. doi: 10.1016/j.scitotenv.2017.03.250
[23] FAN G D, ZHAN J J, LUO J, et al. Fabrication of heterostructured Ag/AgCl@g-C3N4@UIO-66(NH2) nanocomposite for efficient photocatalytic inactivation of Microcystis aeruginosa under visible light[J]. Journal of Hazardous Materials, 2021, 404: 124062. doi: 10.1016/j.jhazmat.2020.124062
[24] 楚弘宇, 王崇臣, 刘昂. MOFs基材料光催化除藻研究进展[J]. 稀有金属, 2023, 47(1): 116-123. CHU H Y, WANG C C, LIU A. Algae removal via photocatalysis over MOFs-based materials: A mini review[J]. Chinese Journal of Rare Metals, 2023, 47(1): 116-123 (in Chinese).
[25] JIN P X, WANG L, MA X L, et al. Construction of hierarchical ZnIn2S4@PCN-224 heterojunction for boosting photocatalytic performance in hydrogen production and degradation of tetracycline hydrochloride[J]. Applied Catalysis B:Environmental, 2021, 284: 119762. doi: 10.1016/j.apcatb.2020.119762
[26] ZHANG Z, CHEN Y, WANG Z, et al. Effective and structure-controlled adsorption of tetracycline hydrochloride from aqueous solution by using Fe-based metal-organic frameworks[J]. Applied Surface Science, 2021, 542: 148662. doi: 10.1016/j.apsusc.2020.148662
[27] ZHANG Z, CHEN Y, HU C Y, et al. Efficient removal of tetracycline by a hierarchically porous ZIF-8 metal organic framework[J]. Environmental Research, 2021, 198: 111254. doi: 10.1016/j.envres.2021.111254
[28] MIRSOLEIMANI-AZIZI S M, SETOODEH P, ZEINALI S, et al. Tetracycline antibiotic removal from aqueous solutions by MOF-5: Adsorption isotherm, kinetic and thermodynamic studies[J]. Journal of Environmental Chemical Engineering, 2018, 6(5): 6118-6130. doi: 10.1016/j.jece.2018.09.017
[29] SHETA S, SALEM S R, EL-SHEIKH S. A novel Iron(III)-based MOF: Synthesis, characterization, biological, and antimicrobial activity study[J]. Journal of Materials Research, 2022, 37: 2356-2367. doi: 10.1557/s43578-022-00644-9
[30] ZERAATI M, MOGHADDAM-MANESH M, KHODAMORADI S, et al. Ultrasonic assisted reverse micelle synthesis of a novel Zn-metal organic framework as an efficient candidate for antimicrobial activities[J]. Journal of Molecular Structure, 2022, 1247: 131315. doi: 10.1016/j.molstruc.2021.131315
[31] ZHENG H A, WANG D R, SUN X, et al. Surface modified by green synthetic of Cu-MOF-74 to improve the anti-biofouling properties of PVDF membranes[J]. Chemical Engineering Journal, 2021, 411: 128524. doi: 10.1016/j.cej.2021.128524
[32] ZENG S, LIU Y S, WANG Y M, et al. Photo-Fenton self-cleaning carbon fibers membrane supported with Zr-MOF@Fe2O3 for effective phosphate removal from algae-rich water[J]. Chemosphere, 2023, 323: 138175. doi: 10.1016/j.chemosphere.2023.138175
[33] LI Z J, GONG C C, HUO P P, et al. Synthesis of magnetic core-shell Fe3O4@PDA@Cu-MOFs composites for enrichment of microcystin-LR by MALDI-TOF MS analysis[J]. RSC Advances, 2020, 10(49): 29061-29067. doi: 10.1039/D0RA04125D
[34] LI Y L, WANG W X. Internalization of the metal–organic framework MIL-101(Cr)-NH2 by a freshwater alga and transfer to zooplankton[J]. Environmental Science & Technology, 2023, 57(1): 118-127.
[35] FAN G D, CHEN Z, WANG B, et al. Photocatalytic removal of harmful algae in natural waters by Ag/AgCl@ZIF-8 coating under sunlight[J]. Catalysts, 2019, 9(8): 698. doi: 10.3390/catal9080698
[36] WANG Z Y, XU Y A, WANG C X, et al. Photocatalytic inactivation of harmful algae Microcystis aeruginosa and degradation of microcystin by g-C3N4/Cu-MOF nanocomposite under visible light[J]. Separation and Purification Technology, 2023, 313: 123515. doi: 10.1016/j.seppur.2023.123515
[37] FAN G D, ZHOU J J, ZHENG X M, et al. Growth inhibition of Microcystis aeruginosa by copper-based MOFs: Performance and physiological effect on algal cells[J]. Applied Organometallic Chemistry, 2018, 32(12): e4600. doi: 10.1002/aoc.4600
[38] FAN G D, BAO M C, ZHENG X M, et al. Growth inhibition of harmful cyanobacteria by nanocrystalline Cu-MOF-74: Efficiency and its mechanisms[J]. Journal of Hazardous Materials, 2019, 367: 529-538. doi: 10.1016/j.jhazmat.2018.12.070
[39] LI Y L, SHANG S S, SHANG J, et al. Toxicity assessment and underlying mechanisms of multiple metal organic frameworks using the green algae Chlamydomonas reinhardtii model[J]. Environmental Pollution, 2021, 291: 118199. doi: 10.1016/j.envpol.2021.118199
[40] WANG X X, HUANG K W, GAO J S, et al. Effects on photosynthetic and antioxidant systems of harmful cyanobacteria by nanocrystalline Zn-MOF-FA[J]. Science of the Total Environment, 2021, 792: 148247. doi: 10.1016/j.scitotenv.2021.148247
[41] FAN G D, YOU Y F, WANG B, et al. Inactivation of harmful cyanobacteria by Ag/AgCl@ZIF-8 coating under visible light: Efficiency and its mechanisms[J]. Applied Catalysis B:Environmental, 2019, 256: 117866. doi: 10.1016/j.apcatb.2019.117866
[42] WANG M J, CHEN J F, HU L J, et al. Heterogeneous interfacial photocatalysis for the inactivation of Karenia mikimotoi by Bi2O3 loaded onto a copper metal organic framework (Bi2O3@Cu-MOF) under visible light[J]. Chemical Engineering Journal, 2023, 456: 141154. doi: 10.1016/j.cej.2022.141154
[43] KIM Y, KALIMUTHU P, NAM G, et al. Cyanobacteria control using Cu-based metal organic frameworks derived from waste PET bottles[J]. Environmental Research, 2023, 224: 115532. doi: 10.1016/j.envres.2023.115532
[44] FAN G D, HONG L, ZHENG X M, et al. Growth inhibition of Microcystic aeruginosa by metal-organic frameworks: Effect of variety, metal ion and organic ligand[J]. RSC Advances, 2018, 8(61): 35314-35326. doi: 10.1039/C8RA05608K
[45] CAI Y, MU W J, JIA K, et al. Effects of three nanomaterials on growth, photosynthetic characteristics and production of reactive oxygen species of diatom Nitzschia palea[J]. Chemistry and Ecology, 2022, 38(2): 145-161. doi: 10.1080/02757540.2021.2023508
[46] DALY G, GHINI V, ADESSI A, et al. Towards a mechanistic understanding of microalgae-bacteria interactions: Integration of metabolomic analysis and computational models[J]. FEMS Microbiology Reviews, 2022, 46(5): fuac020. doi: 10.1093/femsre/fuac020
[47] QIAN H F, ZHU K, LU H P, et al. Contrasting silver nanoparticle toxicity and detoxification strategies in Microcystis aeruginosa and Chlorella vulgaris: New insights from proteomic and physiological analyses[J]. Science of the Total Environment, 2016, 572: 1213-1221. doi: 10.1016/j.scitotenv.2016.08.039
[48] GARG S, WANG K, WAITE T D. Impact of Microcystis aeruginosa exudate on the formation and reactivity of iron oxide particles following Fe(II) and Fe(III) addition[J]. Environmental Science & Technology, 2017, 51(10): 5500-5510.
[49] JIA P L, ZHOU Y P, ZHANG X F, et al. Cyanobacterium removal and control of algal organic matter (AOM) release by UV/H2O2 pre-oxidation enhanced Fe(II) coagulation[J]. Water Research, 2018, 131: 122-130. doi: 10.1016/j.watres.2017.12.020
[50] YANG Y, CHEN H, LU J F. Inactivation of algae by visible-light-driven modified photocatalysts: A review[J]. Science of the Total Environment, 2023, 858: 159640. doi: 10.1016/j.scitotenv.2022.159640
[51] FAN G D, ZHOU J J, ZHENG X M, et al. Fast photocatalytic inactivation of Microcystis aeruginosa by metal-organic frameworks under visible light[J]. Chemosphere, 2020, 239: 124721. doi: 10.1016/j.chemosphere.2019.124721
[52] CAO M M, HUANG X T, WANG F, et al. Transcriptomics and metabolomics revealed the biological response of Chlorella pyrenoidesa to single and repeated exposures of AgNPs at different concentrations[J]. Environmental Science & Technology, 2021, 55(23): 15776-15787.
[53] TSIOLA A, TONCELLI C, FODELIANAKIS S, et al. Low-dose addition of silver nanoparticles stresses marine plankton communities[J]. Environmental Science:Nano, 2018, 5(8): 1965-1980. doi: 10.1039/C8EN00195B