[1] 高荣伟. 我国水资源污染现状及对策分析[J]. 资源与人居环境, 2018(11): 44-51. doi: 10.3969/j.issn.1672-822X.2018.11.009
[2] JIANG Y, NI P, CHEN C, et al. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry[J]. Advanced Energy Materials, 2018, 8(31): 1801909. doi: 10.1002/aenm.201801909
[3] YAO W, FU J, YANG H, et al. The beneficial effect of cathodic hydrogen peroxide generation on mitigating chlorinated by-product formation during water treatment by an electro-peroxone process[J]. Water Research, 2019, 157: 209-217. doi: 10.1016/j.watres.2019.03.049
[4] ZHANG Y, ZUO S, ZHANG Y, et al. Simultaneous removal of tetracycline and disinfection by a flow-through electro-peroxone process for reclamation from municipal secondary effluent[J]. Journal of Hazardous Materials, 2019, 368: 771-777. doi: 10.1016/j.jhazmat.2019.02.005
[5] GUO Y, ZHAO E, WANG J, et al. Comparison of emerging contaminant abatement by conventional ozonation, catalytic ozonation, O3/H2O2 and electro-peroxone processes[J]. Journal of Hazardous Materials, 2020, 389: 121829. doi: 10.1016/j.jhazmat.2019.121829
[6] LU Z, CHEN G, SIAHROSTAMI S, et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials[J]. Nature Catalysis, 2018, 1(2): 156-162. doi: 10.1038/s41929-017-0017-x
[7] GAO Y, ZHU W, WANG C, et al. Enhancement of oxygen reduction on a newly fabricated cathode and its application in the electro-Fenton process[J]. Electrochimica Acta, 2020, 330: 135206. doi: 10.1016/j.electacta.2019.135206
[8] VALIM R B, REIS R M, CASTRO P S, et al. Electrogeneration of hydrogen peroxide in gas diffusion electrodes modified with tert-butyl-anthraquinone on carbon black support[J]. Carbon, 2013, 61: 236-244. doi: 10.1016/j.carbon.2013.04.100
[9] ZHAO Q, AN J, WANG S, et al. Superhydrophobic air-breathing cathode for efficient hydrogen peroxide generation through two-electron pathway oxygen reduction reaction[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 35410-35419.
[10] WANG Z, ZHU W, XU Y, et al. Effects of simazine and food deprivation chronic stress on energy allocation among the costly physiological processes of male lizards (Eremias argus)[J]. Environmental Pollution, 2021, 269: 116139. doi: 10.1016/j.envpol.2020.116139
[11] 王健, 胡稳茂, 王庚超. 功能化碳纳米管膜负载聚(2, 5-二羟基-羟, 4-苯醌硫)柔性电极的制备及在柔性非对称超级电容器中的应用[J]. 功能高分子学报, 2019, 32(2): 184-191.
[12] WU K, ZHANG Y, YONG Z, et al. Continuous preparation and performance enhancement techniques of carbon nanotube fibers[J]. Acta Physico-Chimica Sinica, 2022, 38: 2106034.
[13] 李新洋, 李燕楠, 祁丹阳, 等. 电-多相臭氧催化工艺深度处理焦化废水[J]. 中国环境科学, 2020, 40(10): 4354-4361. doi: 10.3969/j.issn.1000-6923.2020.10.020
[14] KATSOYIANNIS I A, CANONICA S, VON GUNTEN U. Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2[J]. Water Research, 2011, 45(13): 3811-3822. doi: 10.1016/j.watres.2011.04.038
[15] CORTEZ S, TEIXEIRA P, OLIVEIRA R, et al. Ozonation as polishing treatment of mature landfill leachate[J]. Journal of Hazardous Materials, 2010, 182(1/2/3): 730-734.
[16] 朱瑾, 汪文强, 季献华, 等. 原位产H2O2催化臭氧饮用水深度处理中试[J]. 净水技术, 2023, 42(9): 74-79.
[17] BAKHEET B, YUAN S, LI Z, et al. Electro-peroxone treatment of Orange II dye wastewater[J]. Water Research, 2013, 47(16): 6234-6243. doi: 10.1016/j.watres.2013.07.042
[18] YUAN S, LI Z, WANG Y. Effective degradation of methylene blue by a novel electrochemically driven process[J]. Electrochemistry Communications, 2013, 29: 48-51. doi: 10.1016/j.elecom.2013.01.012
[19] YAO W, WANG X, YANG H, et al. Removal of pharmaceuticals from secondary effluents by an electro-peroxone process[J]. Water Research, 2016, 88: 826-835. doi: 10.1016/j.watres.2015.11.024