[1] 王双, 杜倩, 谭莉, 等. AgBr-WO3/GO载流子转移增强及其可见光降解2, 4, 6-三氯苯酚[J]. 功能材料, 2022, 53(2): 2130-2134. doi: 10.3969/j.issn.1001-9731.2022.02.019
[2] 张万辉. 零价铁对2, 4-二氯酚的还原脱氯研究[J]. 广东化工, 2014, 41(13): 47-48. doi: 10.3969/j.issn.1007-1865.2014.13.023
[3] LIANG J L, ZHOU Y. Iron-based advanced oxidation processes for enhancing sludge dewaterability: State of the art, challenges, and sludge reuse[J]. Water Research, 2022, 218: 118499. doi: 10.1016/j.watres.2022.118499
[4] AHMED Y, ZHONG J X, YUAN Z G, et al. Roles of reactive oxygen species in antibiotic resistant bacteria inactivation and micropollutant degradation in Fenton and photo-Fenton processes[J]. Journal of Hazardous Materials, 2022, 430: 128408. doi: 10.1016/j.jhazmat.2022.128408
[5] SUN Y M, ZHOU P, ZHANG P, et al. New insight into carbon materials enhanced Fenton oxidation: A strategy for green iron (III) /iron (II) cycles[J]. Chemical Engineering Journal, 2022, 450: 138423. doi: 10.1016/j.cej.2022.138423
[6] MEYERSTEIN D. Re-examining Fenton and Fenton-like reactions[J]. Nature Reviews Chemistry, 2021, 5(9): 595-597. doi: 10.1038/s41570-021-00310-4
[7] KAVITHA V, PALANIVELU K. Degradation of phenol and trichlorophenol by heterogeneous photo-Fenton process using granular ferric hydroxide®: Comparison with homogeneous system[J]. International Journal of Environmental Science and Technology, 2016, 13(3): 927-936. doi: 10.1007/s13762-015-0922-y
[8] WANG N N, ZHENG T, ZHANG G S, et al. A review on Fenton-like processes for organic wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 762-787. doi: 10.1016/j.jece.2015.12.016
[9] FAROOQI Z H, BEGUM R, NASEEM K, et al. Zero valent iron nanoparticles as sustainable nanocatalysts for reduction reactions[J]. Catalysis Reviews, 2022, 64(2): 286-355. doi: 10.1080/01614940.2020.1807797
[10] LI Y R, ZHAO H-P, ZHU L Z. Remediation of soil contaminated with organic compounds by nanoscale zero-valent iron: a review[J]. Science of the Total Environment, 2021, 760: 143413. doi: 10.1016/j.scitotenv.2020.143413
[11] XU B D, LI D C, QIAN T T, et al. Boosting the activity and environmental stability of nanoscale zero-valent iron by montmorillonite supporting and sulfidation treatment[J]. Chemical Engineering Journal, 2020, 387: 124063. doi: 10.1016/j.cej.2020.124063
[12] LI J X, ZHANG X Y, SUN Y K, et al. Advances in sulfidation of zerovalent iron for water decontamination[J]. Environmental Science & Technology, 2017, 51(23): 13533-13544.
[13] MO Y L, XU J, ZHU L Z. Molecular structure and sulfur content affect reductive dechlorination of chlorinated ethenes by sulfidized nanoscale zerovalent iron[J]. Environmental Science & Technology, 2022, 56(9): 5808-5819.
[14] 郭雅妮, 强雪妮, 李海红, 等. 不同预处理方法对活性炭纤维结构和吸附性能的影响[J]. 环境工程学报, 2016, 10(5): 2227-2232. doi: 10.12030/j.cjee.201412128
[15] ZHANG C C, TIAN H F, WANG Z X, et al. Degradation of PAHs in soil by activated persulfate system with activated carbon supported iron-based bimetal[J]. Science of the Total Environment, 2023, 866: 161323. doi: 10.1016/j.scitotenv.2022.161323
[16] DONG H R, DENG J M, XIE Y K, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr (VI) removal from aqueous solution[J]. Journal of Hazardous Materials, 2017, 332: 79-86. doi: 10.1016/j.jhazmat.2017.03.002
[17] 苏冰琴, 温宇涛, 林昱廷, 等. 改性活性炭纤维活化过硫酸盐深度处理焦化废水及降解吡啶的反应机制研究[J]. 中国环境科学, 2023, 43(2): 576-591. doi: 10.3969/j.issn.1000-6923.2023.02.010
[18] 甄建政, 聂士松, 潘世元, 等. 多维度碳基负载金属催化剂活化PMS降解水中污染物的研究进展[J]. 化工进展, 2022, 41(4): 1858-1872. doi: 10.16085/j.issn.1000-6613.2021-0738
[19] TAN W T, RUAN Y, DIAO Z H, et al. Removal of levofloxacin through adsorption and peroxymonosulfate activation using carbothermal reduction synthesized nZVI/carbon fiber[J]. Chemosphere, 2021, 280: 130626. doi: 10.1016/j.chemosphere.2021.130626
[20] 杨思明, 刘爱荣, 刘静, 等. 硫化纳米零价铁研究进展: 合成、性质及环境应用[J]. 化学学报, 2022, 80(11): 1536-1554.
[21] KONG A Q, LIU M H, ZHANG H J, et al. Highly selective electrocatalytic hydrogenation of benzoic acid over Pt/C catalyst supported on carbon fiber[J]. Chemical Engineering Journal, 2022, 445: 136719. doi: 10.1016/j.cej.2022.136719
[22] SUN J A, WANG L X, WANG Y G, et al. Activation of peroxymonosulfate by MgCoAl layered double hydroxide: Potential enhancement effects of catalyst morphology and coexisting anions[J]. Chemosphere, 2022, 286: 131640. doi: 10.1016/j.chemosphere.2021.131640
[23] XU J, AVELLAN A, LI H, et al. Sulfur loading and speciation control the hydrophobicity, electron transfer, reactivity, and selectivity of sulfidized nanoscale zerovalent iron[J]. Advanced Materials, 2020, 32(17): 1906910. doi: 10.1002/adma.201906910
[24] XU J, AVELLAN A, LI H, et al. Iron and sulfur precursors affect crystalline structure, speciation, and reactivity of sulfidized nanoscale zerovalent iron[J]. Environmental Science & Technology, 2020, 54(20): 13294-13303.
[25] XU Y N, WU Y T, LIU Y F, et al. Covering extracellular polymeric substances to enhance the reactivity of sulfidated nanoscale zerovalent iron toward Cr (VI) removal[J]. Chemical Engineering Journal, 2022, 448: 137610. doi: 10.1016/j.cej.2022.137610
[26] DUAN X G, SU C, ZHOU L, et al. Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds[J]. Applied Catalysis B: Environmental, 2016, 194: 7-15. doi: 10.1016/j.apcatb.2016.04.043
[27] LI J W, ZOU J, ZHANG S Y, et al. Sodium tetraborate simultaneously enhances the degradation of acetaminophen and reduces the formation potential of chlorinated by-products with heat-activated peroxymonosulfate oxidation[J]. Water Research, 2022, 224: 119095. doi: 10.1016/j.watres.2022.119095
[28] 李广英, 杜敏洁, 谈成英, 等. 锰铁氧体活化PMS降解双酚A的过程机制[J]. 环境工程学报, 2021, 15(9): 2952-2962.
[29] DU J K, BAO J G, LU C H, et al. Reductive sequestration of chromate by hierarchical FeS@Fe (0) particles[J]. Water Research, 2016, 102: 73-81. doi: 10.1016/j.watres.2016.06.009
[30] 姚梦东, 岳俊杰, 徐雪婧, 等. 球磨硫化零价铁活化过硫酸盐降解水体中有机氯农药[J]. 环境工程学报, 2021, 15(8): 2563-2575. doi: 10.12030/j.cjee.202103052
[31] 李鑫, 尹华, 罗昊昱, 等. 磁性生物炭负载α-MnO2活化过一硫酸盐降解2, 2′, 4, 4′-四溴联苯醚[J]. 环境科学, 2021, 42(10): 4798-4806.
[32] LI D P, FENG Z Q, ZHOU B H, et al. Impact of water matrices on oxidation effects and mechanisms of pharmaceuticals by ultraviolet-based advanced oxidation technologies: A review[J]. Science of the Total Environment, 2022, 844: 157162. doi: 10.1016/j.scitotenv.2022.157162
[33] ZHEN J Z, NIE S S, SUN J H, et al. Fe3O4 nanoparticles encapsulated in boron nitride support via N-doped carbon layer as a peroxymonosulfate activator for pollutant degradation: Important role of metal boosted C–N sites[J]. Journal of Environmental Management, 2022, 311: 114859. doi: 10.1016/j.jenvman.2022.114859
[34] 杨佩汶, 林毅, 林华, 等. 不同构型人工湿地-微生物燃料电池对废水中对氯苯酚的净化效果及产电性能的影响[J]. 环境工程学报, 2023, 17(2): 507-516. doi: 10.12030/j.cjee.202210035
[35] 魏博. 大气和造纸废水中甲氧基苯酚类污染物去除机制的理论研究[D]. 济南: 山东大学, 2021.
[36] DE FARIAS M B, PREDIGER P, VIEIRA M G A. Conventional and green-synthesized nanomaterials applied for the adsorption and/or degradation of phenol: A recent overview[J]. Journal of Cleaner Production, 2022, 367: 132980. doi: 10.1016/j.jclepro.2022.132980
[37] FANG C, HAO Z X, WANG Y L, et al. Carbon nanotube as a nanoreactor for efficient degradation of 3-aminophenol over CoOx/CNT catalyst[J]. Journal of Cleaner Production, 2023, 405: 136912. doi: 10.1016/j.jclepro.2023.136912
[38] 窦欣, 田乔鹏, 王琦, 等. Ganoderma sp. SYBC L48漆酶酶学性质及其对酸性红1的脱色性能[J]. 环境工程学报, 2019, 13(4): 856-864. doi: 10.12030/j.cjee.201809095
[39] 李新欣. 稻壳生物炭吸附水中对硝基苯酚和硝基苯的研究[D]. 南京: 南京信息工程大学, 2023.
[40] CHEN Q, MA C R, DUAN W Y, et al. Coupling adsorption and degradation in p-nitrophenol removal by biochars[J]. Journal of Cleaner Production, 2020, 271: 122550. doi: 10.1016/j.jclepro.2020.122550
[41] TANG N N, QIAN C B, ZHANG C W, et al. Isolation anchoring strategy for fabricating high-loading uniformly dispersed iron-based catalysts toward selective removal of phenolic compounds[J]. Separation and Purification Technology, 2023, 326: 124789. doi: 10.1016/j.seppur.2023.124789
[42] CHEN L K, HUANG Y F, ZHOU M L, et al. Nitrogen-doped porous carbon encapsulating iron nanoparticles for enhanced sulfathiazole removal via peroxymonosulfate activation[J]. Chemosphere, 2020, 250: 126300. doi: 10.1016/j.chemosphere.2020.126300
[43] LIU X R, LIU Y, QIN H H, et al. Selective removal of phenolic compounds by peroxydisulfate activation: Inherent role of hydrophobicity and interface ROS[J]. Environmental Science & Technology, 2022, 56(4): 2665-2676.
[44] WANG M X, WANG Y G, SUN J H, et al. Layered double hydroxide/carbonitride heterostructure with potent combination for highly efficient peroxymonosulfate activation[J]. Chemosphere, 2023, 313: 137394. doi: 10.1016/j.chemosphere.2022.137394
[45] DONG H Y, LI Y, WANG S C, et al. Both Fe (IV) and radicals are active oxidants in the Fe (II) /peroxydisulfate process[J]. Environmental Science & Technology Letters, 2020, 7(3): 219-224.
[46] 胡彩萍, 锁进然, 丁冠涛, 等. 草酸强化天然铁矿石异相光助Fenton催化降解萘酚[EB/OL]. [2023-07-06]中国环境科学. DOI: 10.19674/j.cnki.issn1000-6923.20230508.001.
[47] WU L B, LIN Q T, FU H Y, et al. Role of sulfide-modified nanoscale zero-valent iron on carbon nanotubes in nonradical activation of peroxydisulfate[J]. Journal of Hazardous Materials, 2022, 422: 126949. doi: 10.1016/j.jhazmat.2021.126949
[48] GAO F L, AHMAD S, TANG J C, et al. Enhanced nitrobenzene removal in soil by biochar supported sulfidated nano zerovalent iron: Solubilization effect and mechanism[J]. Science of the Total Environment, 2022, 826: 153960. doi: 10.1016/j.scitotenv.2022.153960
[49] LING C, WU S, HAN J A, et al. Sulfide-modified zero-valent iron activated periodate for sulfadiazine removal: Performance and dominant routine of reactive species production[J]. Water Research, 2022, 220: 118676. doi: 10.1016/j.watres.2022.118676
[50] JIANG Q, JIANG S M, LI H, et al. A stable biochar supported S-nZVI to activate persulfate for effective dichlorination of atrazine[J]. Chemical Engineering Journal, 2022, 431: 133937. doi: 10.1016/j.cej.2021.133937
[51] ZHANG C, LU J, WU J. One-step green preparation of magnetic seaweed biochar/sulfidated Fe0 composite with strengthen adsorptive removal of tetrabromobisphenol A through in situ reduction[J]. Bioresource Technology, 2020, 307: 123170. doi: 10.1016/j.biortech.2020.123170
[52] MI X Y, WANG P F, XU S Z, et al. Almost 100% peroxymonosulfate conversion to singlet oxygen on single‐atom CoN2+2 sites[J]. Angewandte Chemie International Edition, 2021, 60(9): 4588-4593. doi: 10.1002/anie.202014472
[53] XU Y, GUO Q, LI Y, et al. Stabilization of nano zero-valent iron by electrospun composite mat with good catalysis and recyclability[J]. Journal of Cleaner Production, 2022, 363: 132459. doi: 10.1016/j.jclepro.2022.132459
[54] QIN X D, LI Z K, ZHU Z W, et al. Mechanism and kinetics of treatment of acid orange II by aged Fe-Si-B metallic glass powders[J]. Journal of Materials Science & Technology, 2017, 33(10): 1147-1152.
[55] WANG J H, DUAN H Y, WANG M X, et al. Construction of durable superhydrophilic activated carbon fibers based material for highly-efficient oil/water separation and aqueous contaminants degradation[J]. Environmental Research, 2021, 207: 112212.
[56] DENG J M, CHEN T, ARBID Y, et al. Aging and reactivity assessment of nanoscale zerovalent iron in groundwater systems[J]. Water Research, 2022, 229: 119472.
[57] XU J, WANG Y, WENG C, et al. Reactivity, selectivity, and long-term performance of sulfidized nanoscale zerovalent iron with different properties[J]. Environmental Science & Technology, 2019, 53(10): 5936-5945.
[58] 陈砚田, 郄晗彤, 张胤杰, 等. 还原氧化石墨烯负载零价铁的合成及对TNT废水处理[J]. 高等学校化学学报, 2020, 41(8): 1836-1842. doi: 10.7503/cjcu20200198