[1] |
JOHIR M A H. Effect of salt concentration on membrane bioreactor(MBR) performances: Detailed organic characterization[J]. Desalination, 2013, 322: 13-20. doi: 10.1016/j.desal.2013.04.025
|
[2] |
张磊. IAMBR处理高盐污水的效能及其微生物群落结构分析[J]. 膜科学与技术, 2020, 40(5): 101-110.
|
[3] |
LIANG Y X, ZHU H, BANUELOS G, et al. Removal of nutrients in saline wastewater using constructed wetlands: Plant species, influent loads and salinity levels as influencing factors[J]. Chemosphere, 2017, 187: 52-61. doi: 10.1016/j.chemosphere.2017.08.087
|
[4] |
滕丽. VR技术在含盐废水处理领域的运用策略[J]. 环境与发展, 2020, 32(11): 75-76.
|
[5] |
武超, 梁鹏飞, 张冲, 等. MVR技术处理高盐废水应用进展[J]. 化学工程与装备, 2020(2): 202-203.
|
[6] |
伊学农, 夏翰生, 王晨, 等. 生物膜厌氧折流板反应器处理高盐有机废水研究[J]. 化工设计通讯, 2020, 46(3): 256-258. doi: 10.3969/j.issn.1003-6490.2020.03.167
|
[7] |
林玉科, 张洁, 吴志国, 等. MBR污泥驯化和在高盐废水处理中的应用[J]. 膜科学与技术, 2017, 37(4): 86-92+99.
|
[8] |
张宇坤, 王淑莹, 董怡君, 等. NaCl盐度对氨氧化细菌活性的影响及动力学特性[J]. 中国环境科学, 2014, 35(2): 465-470.
|
[9] |
LI Z, SONG B, WU Z, et al. 3D porous graghene with ultrahigh surface area for microscale capacitive deionization[J]. Nano Energy, 2015, 11: 711-718. doi: 10.1016/j.nanoen.2014.11.018
|
[10] |
吕晓丽, 肖荣林, 吴浩波, 等. 炭电极电容去离子技术研究进展[J]. 水处理技术, 2020, 46(8): 17-21+33.
|
[11] |
WANG J, WANG Y X. Progress in Research on electroadsorption desalination technology[J]. Chemical Enterprise Management, 2019(10): 97-98.
|
[12] |
张思韬, 韩严和, 张晓飞, 陈家庆. 用于处理工业废水的电极材料研究进展[J]. 工业水处理, 2019, 39(11): 1-6+57.
|
[13] |
LI X H, LI H Y, XU X J, et al. Preparation of a Reduced Graphene Oxide @ Stainless Steel Net Electrode and Its Application of Electrochemical Removal Pb(II)[J]. Chemical Engineering Journal, 2015, 271: 252-259. doi: 10.1016/j.cej.2015.03.001
|
[14] |
ZOU Y, WANG Y, WU F, et al. Controllable synthesis of Ca-Mg-Al layered double hydroxides and calcined layered double oxides for the efficient removal of U(VI) from wastewater solutions[J]. ACS Sustainable Chemistry & Engineering, 2017, 5: 1173-1185.
|
[15] |
LEI C, ZHU X, ZHU B, et al. Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions[J]. Journal of Hazardous Materials, 2017, 321: 801-811. doi: 10.1016/j.jhazmat.2016.09.070
|
[16] |
YADAV M S. Metal oxides nanostructure-based electrode materials for supercapacitor application[J]. Journal of Nanoparticle Research, 2020, 22(12): 1-18.
|
[17] |
卞维柏, 潘建明. 电吸附技术及吸附电极材料研究进展[J]. 化工学报, 2021, 72(1): 304-319.
|
[18] |
TAN X, LIU Y, ZENG G, et al. Application of carbon materials for the removal of pollutants from aqueous solutions[J]. Chemosphere, 2015, 125: 70-85. doi: 10.1016/j.chemosphere.2014.12.058
|
[19] |
宋香琳, 李亚科, 李栋, 等. 花生壳生物炭的改性及其吸附Pb2+性能研究[J]. 生物质化学工程, 2022, 56(6): 43-50. doi: 10.3969/j.issn.1673-5854.2022.06.007
|
[20] |
吴鸿伟, 陈萌, 黄贤金, 等. 改性炭材料对水体中头孢噻肟的吸附机制[J]. 中国环境科学, 2018, 38(7): 2527-2534. doi: 10.3969/j.issn.1000-6923.2018.07.018
|
[21] |
CHEN W, GONG M, LI K X, et al. Insight into KOH activation mechanism during biomass pyrolysis: Chemical reactions between O-containing groups and KOH[J]. Applied Energy, 2020, 278: 115730. doi: 10.1016/j.apenergy.2020.115730
|
[22] |
JIN H M, HANIF M U, CAPAREDA S, et al. Copper(Ⅱ) removal potential from aqueous solution by pyrolysis carbon materials derived from anaerobically digested algae-dairy-manure and effect of KOH activation[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 365-372. doi: 10.1016/j.jece.2015.11.022
|
[23] |
钟来元, 廖荣骏, 刘付宇杰, 等. KOH改性花生壳生物炭对盐酸四环素的吸附性能及其机理[J/OL]. 农业环境科学学报: 1-15[2023-07-26]. http://kns.cnki.net/kcms/detail/12.1347.S.20230630.1331.002.html.
|
[24] |
张学杨, 徐浩亮, 戴欢涛, 等. 微波辐照木质素浸渍生物炭吸附CO2性能[J/OL]. 中国环境科学: 1-11 [2023-07-26].https://doi.org/10.19674/j.cnki.issn1000-6923.20230327.001.
|
[25] |
HAN J L, CHEN K, WU B, et al. Preparation of mesoporous magnetic composite carbon spheres with high adsorption properties[J]. Fine Chemicals, 2020, 37(4): 689-695,709.
|
[26] |
LU W, ZHANG S P, LIU X Z, et al. Effects of pretreatment methods on properties of activated carbon from rice husk[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(S1): 157-163.
|
[27] |
王炯, 张品, 张舒晴, 等. 温度对秸秆炭材料理化特性和电化学特性的影响[J]. 太阳能学报, 2022, 43(5): 399-404.
|
[28] |
CHEN B L, ZHOU D D, ZHU L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science and Technology, 2008, 42(14): 5137-5143. doi: 10.1021/es8002684
|
[29] |
LI Y C, SHAO J G, WANG X H, et al. Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption[J]. Energy Fuels, 2014, 28(8): 5119-5127. doi: 10.1021/ef500725c
|
[30] |
CHEN B, JOHNSON E J, CHEFETZ B, et al. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: The role of polarity and accessibility[J] Environmental Science and Technology, 2005, 39(16): 6138-6146.
|
[31] |
BOGUTA P, SOKOLOWSKA Z, SKIC K, et al. Chemically engineered carbon materials- effect of concentration and type of modifier on sorption and structural properties of carbon materials from wood waste[J]. Fuel, 2019, 256: 115893. doi: 10.1016/j.fuel.2019.115893
|
[32] |
张继义, 李金涛, 鲁华涛, 等. 小麦秸秆生物碳质吸附剂从水中吸附硝基苯的机理[J]. 环境科学研究, 2012, 25(3): 333-339. doi: 10.13198/j.res.2012.03.92.zhangjy.015
|
[33] |
HUANG H, TANG J C, GAO K, et al. Characterization of KOH modified biochars from different pyrolysis temperatures and enhanced adsorption of antibiotics[J]. RSC Advances, 2017, 24(7): 14640-14648.
|
[34] |
李博文, 汪若蘅, 黎丽, 等. 碱活化多孔碳用于分离甲苯及活化/吸附机理[J]. 高等学校化学学报, 2020, 41(2): 284-292. doi: 10.7503/cjcu20190496
|
[35] |
QIE L, CHEN W M, WANG Z H, et al. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability[J]. Advanced Materials, 2012, 24(15): 2047-2050. doi: 10.1002/adma.201104634
|
[36] |
DAI Y J, LI J J, SHAN D X. Adsorption of tetracycline in aqueous solution by carbon materials derived from waste Auricularia auricula dregs[J]. Chemosphere, 2020, 238: 124432-124439. doi: 10.1016/j.chemosphere.2019.124432
|
[37] |
RAMAMOORTHY M, RAGUPATHY S, SAKTHI D, et al. Synthesis of SnO2 loaded on corn cob activated carbon for enhancing the photodegradation of methylene blue under sunlight irradiation[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104331. doi: 10.1016/j.jece.2020.104331
|
[38] |
NIU P, WANG P, XU Y, et al. Tuning the electronic conductivity of porous nitrogen-doped carbon nanofibers with graphene for high-performance potassium-ion storage[J]. Inorganic Chemistry frontiers, 2021, 8: 3926-3933. doi: 10.1039/D1QI00664A
|
[39] |
BARROSO B A. Understanding and tuning the electrical conductivity of activated carbon: A state-of-the-art review[J]. Critical Reviews in Solid State and Materials Sciences, 2019, 46: 1-37.
|
[40] |
徐琰. 柠檬酸改性炭材料表征特性及其对亚甲基蓝吸附性能研究[D]. 长沙: 湖南大学, 2017.
|
[41] |
张婧懿. 花生壳炭材料电极制备和水处理电化学性能[D]. 武汉: 中南民族大学, 2019.
|
[42] |
WILLIAMS E N, NUR P A. KOH modified Thevetia peruviana shell activated carbon for sorption of dimethoate from aqueous solution[J]. Journal of environmental science and health. Part B, Pesticides, food contaminants, and agricultural wastes, 2008, 54(1): 1-13.
|
[43] |
崔蒙蒙. 水铁矿对含磷废水的吸附性能及机理分析[D]. 苏州: 苏州科技大学, 2017.
|
[44] |
陈鹏. 应用XPS研究煤中有机硫在脱硫时的存在形态[J]. 洁净煤技术, 1997(2): 17-20. doi: 10.13226/j.issn.1006-6772.1997.02.003
|
[45] |
PIETRZAK R, WACHOWSKA H. The influence of oxidation with HNO3 on the surface composition of high sulphur coals XPS study[J]. Fuel Process Technology, 2006, 87(11): 1021-1029. doi: 10.1016/j.fuproc.2006.08.001
|
[46] |
DU Z Y, TIAN W J, QIAO K L, et al. Improved chlorine and chromium ion removal from leather processing wastewater by biocharcoal-based capacitive deionization[J]. Separation and Purification Technology, 2020(233): 116024.
|
[47] |
温萍, 刘圣勇, 王炯等. 乙酸锌改性稻壳炭材料电容及电吸附Cu2+性能[J]. 精细化工, 2023, 40(4): 902-910.
|
[48] |
曾茶菊. 电场作用下重金属Cu(Ⅱ)在生物炭上的吸附和解吸[D]. 上海: 上海大学, 2021.
|