[1] |
DUNCAN B N, LAMSAL L N, THOMPSON A M, et al. A space-based, high-resolution view of notable changes in urban NOx pollution around the world (2005-2014)[J]. Journal of Geophysical Research:Atmospheres, 2016, 121(2): 976-996. doi: 10.1002/2015JD024121
|
[2] |
BONINGARI T, SMIRNIOTIS P G. Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement[J]. Current Opinion in Chemical Engineering, 2016, 13: 133-141. doi: 10.1016/j.coche.2016.09.004
|
[3] |
RICHTER A, BURROWS J P, NÜß H, et al. Increase in tropospheric nitrogen dioxide over China observed from space[J]. Nature, 2005, 437(7055): 129-132. doi: 10.1038/nature04092
|
[4] |
LIU F D, SHAN W P, PAN D W, et al. Selective catalytic reduction of NOx by NH3 for heavy-duty diesel vehicles[J]. Chinese Journal of Catalysis, 2014, 35(9): 1438-1445. doi: 10.1016/S1872-2067(14)60048-6
|
[5] |
BUSCA G, LIETTI L, RAMIS G, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review[J]. Applied Catalysis B:Environmental, 1998, 18(1/2): 1-36.
|
[6] |
刘福东, 单文坡, 石晓燕, 等. 用于NH3选择性催化还原NOx的钒基催化剂[J]. 化学进展, 2012, 24(4): 445-455.
|
[7] |
SHAN W P, LIU F D, YU Y B, et al. The use of ceria for the selective catalytic reduction of NOx with NH3[J]. Chinese Journal of Catalysis, 2014, 35(8): 1251-1259. doi: 10.1016/S1872-2067(14)60155-8
|
[8] |
LIU F D, YU Y B, HE H. Environmentally-benign catalysts for the selective catalytic reduction of NOx from diesel engines: structure-activity relationship and reaction mechanism aspects[J]. Chemical Communications, 2014, 50(62): 8445-8463. doi: 10.1039/C4CC01098A
|
[9] |
SHAN W P, YU Y B, ZHANG Y, et al. Theory and practice of metal oxide catalyst design for the selective catalytic reduction of NOx with NH3[J]. Catalysis Today, 2021, 376: 292-301. doi: 10.1016/j.cattod.2020.05.015
|
[10] |
XU W Q, YU Y B, ZHANG C B, et al. Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst[J]. Catalysis Communications, 2008, 9(6): 1453-1457. doi: 10.1016/j.catcom.2007.12.012
|
[11] |
SHAN W P, LIU F D, HE H, et al. The remarkable improvement of a Ce-Ti based catalyst for NOx abatement, prepared by a homogeneous precipitation method[J]. ChemCatChem, 2011, 3(8): 1286-1289. doi: 10.1002/cctc.201000409
|
[12] |
SHAN W P, LIU F D, HE H, et al. Novel cerium-tungsten mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. Chemical Communications, 2011, 47(28): 8046-8048. doi: 10.1039/c1cc12168e
|
[13] |
SHAN W P, GENG Y, CHEN X L, et al. A highly efficient CeWOx catalyst for the selective catalytic reduction of NOx with NH3[J]. Catalysis Science & Technology, 2016, 6(4): 1195-1200.
|
[14] |
QU R Y, GAO X, CEN K F, et al. Relationship between structure and performance of a novel cerium-niobium binary oxide catalyst for selective catalytic reduction of NO with NH3[J]. Applied Catalysis B:Environmental, 2013, 142-143: 290-297. doi: 10.1016/j.apcatb.2013.05.035
|
[15] |
QU R Y, PENG Y, SUN X X, et al. Identification of the reaction pathway and reactive species for the selective catalytic reduction of NO with NH3 over cerium-niobium oxide catalysts[J]. Catalysis Science & Technology, 2016, 6(7): 2136-2142.
|
[16] |
LIAN Z H, SHAN W P, ZHANG Y, et al. Morphology-dependent catalytic performance of NbOx/CeO2 catalysts for selective catalytic reduction of NOx with NH3[J]. Industrial & Engineering Chemistry Research, 2018, 57(38): 12736-12741.
|
[17] |
COLÓN G, VALDIVIESO F, PIJOLAT M, et al. Textural and phase stability of CexZr1-xO2 mixed oxides under high temperature oxidising conditions[J]. Catalysis Today, 1999, 50(2): 271-284. doi: 10.1016/S0920-5861(98)00509-4
|
[18] |
LIU Z M, FENG X, ZHOU Z Z, et al. Ce-Sn binary oxide catalyst for the selective catalytic reduction of NOx by NH3[J]. Applied Surface Science, 2018, 428: 526-533. doi: 10.1016/j.apsusc.2017.09.175
|
[19] |
LI X L, LI Y H, DENG S S, et al. A Ce-Sn-Ox catalyst for the selective catalytic reduction of NOx with NH3[J]. Catalysis Communications, 2013, 40: 47-50. doi: 10.1016/j.catcom.2013.05.024
|
[20] |
WANG Y L, JIANG X C, XIA Y N. A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions[J]. Journal of the American Chemical Society, 2003, 125(52): 16176-16177. doi: 10.1021/ja037743f
|
[21] |
FANG C, SHI L Y, LI H R, et al. Creating hierarchically macro-/mesoporous Sn/CeO2 for the selective catalytic reduction of NO with NH3[J]. RSC Advances, 2016, 6(82): 78727-78736. doi: 10.1039/C6RA18339E
|
[22] |
ABEE M W, COX D F. NH3 chemisorption on stoichiometric and oxygen-deficient SnO2 (110) surfaces[J]. Surface Science, 2002, 520(1/2): 65-77.
|
[23] |
ZHAO W X, RONG J, LUO W, et al. Enhancing the K-poisoning resistance of CeO2-SnO2 catalyst by hydrothermal method for NH3-SCR reaction[J]. Applied Surface Science, 2022, 579: 152176. doi: 10.1016/j.apsusc.2021.152176
|
[24] |
ZHANG G D, HAN W L, ZHAO H J, et al. Solvothermal synthesis of well-designed ceria-tin-titanium catalysts with enhanced catalytic performance for wide temperature NH3-SCR reaction[J]. Applied Catalysis B:Environmental, 2018, 226: 117-126. doi: 10.1016/j.apcatb.2017.12.030
|
[25] |
LIU J J, HUO Y L, SHI X Y, et al. Insight into the remarkable enhancement of NH3-SCR performance of Ce-Sn oxide catalyst by tungsten modification[J]. Catalysis Today, 2023, 410: 36-44. doi: 10.1016/j.cattod.2022.02.001
|
[26] |
MA Z R, WU X D, SI Z C, et al. Impacts of niobia loading on active sites and surface acidity in NbOx/CeO2-ZrO2 NH3-SCR catalysts[J]. Applied Catalysis B:Environmental, 2015, 179: 380-394. doi: 10.1016/j.apcatb.2015.05.038
|
[27] |
MA Z R, WENG D, WU X D, et al. A novel Nb-Ce/WOx-TiO2 catalyst with high NH3-SCR activity and stability[J]. Catalysis Communications, 2012, 27: 97-100. doi: 10.1016/j.catcom.2012.07.006
|
[28] |
MA S Y, GAO W Q, YANG Z D, et al. Superior Ce-Nb-Ti oxide catalysts for selective catalytic reduction of NO with NH3[J]. Journal of the Energy Institute, 2021, 94: 73-84. doi: 10.1016/j.joei.2020.11.001
|
[29] |
DING S P, LIU F D, SHI X Y, et al. Promotional effect of Nb additive on the activity and hydrothermal stability for the selective catalytic reduction of NOx with NH3 over CeZrOx catalyst[J]. Applied Catalysis B:Environmental, 2016, 180: 766-774. doi: 10.1016/j.apcatb.2015.06.055
|
[30] |
HAO Z F, JIAO Y L, SHI Q, et al. Improvement of NH3-SCR performance and SO2 resistance over Sn modified CeMoOx electrospun fibers at low temperature[J]. Catalysis Today, 2019, 327: 37-46. doi: 10.1016/j.cattod.2018.07.037
|
[31] |
YAO X J, YU Q, JI Z Y, et al. A comparative study of different doped metal cations on the reduction, adsorption and activity of CuO/Ce0.67M0.33O2 (M=Zr4+, Sn4+, Ti4+) catalysts for NO+CO reaction[J]. Applied Catalysis B:Environmental, 2013, 130-131: 293-304. doi: 10.1016/j.apcatb.2012.11.020
|
[32] |
LIU Z M, LIU Y X, CHEN B H, et al. Novel Fe-Ce-Ti catalyst with remarkable performance for the selective catalytic reduction of NOx by NH3[J]. Catalysis Science & Technology, 2016, 6(17): 6688-6696.
|
[33] |
YAN L J, LIU Y Y, ZHA K W, et al. Deep insight into the structure-activity relationship of Nb modified SnO2-CeO2 catalysts for low-temperature selective catalytic reduction of NO by NH3[J]. Catalysis Science & Technology, 2017, 7(2): 502-514.
|
[34] |
LIU J J, HE G Z, SHAN W P, et al. Introducing tin to develop ternary metal oxides with excellent hydrothermal stability for NH3 selective catalytic reduction of NOx[J]. Applied Catalysis B:Environmental, 2021, 291: 120125. doi: 10.1016/j.apcatb.2021.120125
|
[35] |
XU H D, WANG Y, CAO Y, et al. Catalytic performance of acidic zirconium-based composite oxides monolithic catalyst on selective catalytic reduction of NOx with NH3[J]. Chemical Engineering Journal, 2014, 240: 62-73. doi: 10.1016/j.cej.2013.11.053
|
[36] |
JIANG B Q, LI Z G, LEE S C. Mechanism study of the promotional effect of O2 on low-temperature SCR reaction on Fe-Mn/TiO2 by DRIFT[J]. Chemical Engineering Journal, 2013, 225: 52-58. doi: 10.1016/j.cej.2013.03.022
|
[37] |
CHEN L, LI J H, GE M F. DRIFT study on cerium-tungsten/titiania catalyst for selective catalytic reduction of NOx with NH3[J]. Environmental Science & Technology, 2010, 44(24): 9590-9596.
|
[38] |
CHEN L, LI J H, GE M F, et al. Mechanism of selective catalytic reduction of NOx with NH3 over CeO2-WO3 catalysts[J]. Chinese Journal of Catalysis, 2011, 32(5): 836-841. doi: 10.1016/S1872-2067(10)60195-7
|
[39] |
LIU Z M, ZHANG S X, LI J H, et al. Promoting effect of MoO3 on the NOx reduction by NH3 over CeO2/TiO2 catalyst studied with in situ DRIFTS[J]. Applied Catalysis B:Environmental, 2014, 144: 90-95. doi: 10.1016/j.apcatb.2013.06.036
|
[40] |
SHAN W P, LIU F D, HE H, et al. A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. Applied Catalysis B:Environmental, 2012, 115-116: 100-106. doi: 10.1016/j.apcatb.2011.12.019
|
[41] |
WU Z B, JIANG B Q, LIU Y, et al. DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3[J]. Environmental Science & Technology, 2007, 41(16): 5812-5817.
|
[42] |
LIU F D, HE H, DING Y, et al. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3[J]. Applied Catalysis B:Environmental, 2009, 93(1/2): 194-204.
|
[43] |
LIU F D, SHAN W P, LIAN Z H, et al. The smart surface modification of Fe2O3 by WOx for significantly promoting the selective catalytic reduction of NOx with NH3[J]. Applied Catalysis B:Environmental, 2018, 230: 165-176. doi: 10.1016/j.apcatb.2018.02.052
|