[1] |
BAIN R, JOHNSTON R, MITIS F, et al. Establishing sustainable development goal baselines for household drinking water, sanitation and hygiene services [J]. Water, 2018, 10(12): 1711-1729. doi: 10.3390/w10121711
|
[2] |
MEKONNEN M M, HOEKSTRA A Y. Four billion people facing severe water scarcity [J]. Science Advances, 2016, 2(2): e1500323. doi: 10.1126/sciadv.1500323
|
[3] |
KIM H, RAO S R, LAPOTIN A, et al. Thermodynamic analysis and optimization of adsorption-based atmospheric water harvesting [J]. International Journal of Heat and Mass Transfer, 2020, 161: 120253. doi: 10.1016/j.ijheatmasstransfer.2020.120253
|
[4] |
LORD J, THOMAS A, TREAT N, et al. Global potential for harvesting drinking water from air using solar energy [J]. Nature, 2021, 598(7882): 611-617. doi: 10.1038/s41586-021-03900-w
|
[5] |
徐荣潞, 李宝富, 廉丽姝. 1960—2015年西北干旱区相对湿度时空变化与气候要素的定量关系 [J]. 水土保持研究, 2020, 27(6): 233-239,246.
XU R L, LI B F, LIAN L S. Quantitative relationship between the spatiotemporal change of relative humidity and climatic factors in the arid region of northwest China from 1960 to 2015 [J]. Research of Soil and Water Conservation, 2020, 27(6): 233-239,246(in Chinese).
|
[6] |
EDDAOUDI M, KIM J, ROSI N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage [J]. Science, 2002, 295(5554): 469-472. doi: 10.1126/science.1067208
|
[7] |
LIU X L, WANG X R, KAPTEIJN F. Water and metal-organic frameworks: From interaction toward utilization [J]. Chemical Reviews, 2020, 120(16): 8303-8377. doi: 10.1021/acs.chemrev.9b00746
|
[8] |
MOUCHAHAM G, CUI F S, NOUAR F, et al. Metal-organic frameworks and water: ‘from old enemies to friends’? [J]. Trends in Chemistry, 2020, 2(11): 990-1003. doi: 10.1016/j.trechm.2020.09.004
|
[9] |
SEO Y K, YOON J W, LEE J S, et al. Energy-efficient dehumidification over hierachically porous metal-organic frameworks as advanced water adsorbents [J]. Advanced Materials, 2012, 24(6): 806-810. doi: 10.1002/adma.201104084
|
[10] |
HANIKEL N, PRÉVOT M S, FATHIEH F, et al. Rapid cycling and exceptional yield in a metal-organic framework water harvester [J]. ACS Central Science, 2019, 5(10): 1699-1706. doi: 10.1021/acscentsci.9b00745
|
[11] |
KIM H, YANG S, RAO S R, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight [J]. Science, 2017, 356(6336): 430-434. doi: 10.1126/science.aam8743
|
[12] |
SILVA M P, RIBEIRO A M, SILVA C G, et al. MIL-160(Al) MOF's potential in adsorptive water harvesting [J]. Adsorption, 2021, 27(2): 213-226. doi: 10.1007/s10450-020-00286-5
|
[13] |
YILMAZ G, MENG F L, LU W, et al. Autonomous atmospheric water seeping MOF matrix [J]. Science Advances, 2020, 6(42): eabc8605. doi: 10.1126/sciadv.abc8605
|
[14] |
徐玉貌, 刘红年, 徐桂玉. 大气科学概论[M]. 南京: 南京大学出版社, 2000.
XU Y M. LIU H N, XU G Y. Introduction to Atmospheric Sciences[M]. Nanjing: Nanjing University Press, 2000(in Chinese).
|
[15] |
WAHLGREN R V. Atmospheric water vapour processor designs for potable water production: A review [J]. Water Research, 2001, 35(1): 1-22. doi: 10.1016/S0043-1354(00)00247-5
|
[16] |
KLEMM O, SCHEMENAUER R S, LUMMERICH A, et al. Fog as a fresh-water resource: Overview and perspectives [J]. Ambio, 2012, 41(3): 221-234. doi: 10.1007/s13280-012-0247-8
|
[17] |
JARIMI H, POWELL R, RIFFAT S. Review of sustainable methods for atmospheric water harvesting [J]. International Journal of Low-Carbon Technologies, 2020, 15(2): 253-276. doi: 10.1093/ijlct/ctz072
|
[18] |
LUMMERICH A, TIEDEMANN K J. Fog water harvesting on the verge of economic competitiveness [J]. Erdkunde, 2011, 65(3): 305-306. doi: 10.3112/erdkunde.2011.03.07
|
[19] |
PARK J, LEE C, LEE S, et al. Clogged water bridges for fog harvesting [J]. Soft Matter, 2021, 17(1): 136-144. doi: 10.1039/D0SM01133A
|
[20] |
YAMADA Y, SAKATA E, ISOBE K, et al. Wettability difference induced out-of-plane unidirectional droplet transport for efficient fog harvesting [J]. ACS Applied Materials & Interfaces, 2021, 13(29): 35079-35085. doi: 10.1021/acsami.1c06432
|
[21] |
FENG R, SONG F, XU C, et al. A Quadruple-Biomimetic surface for spontaneous and efficient fog harvesting [J]. Chemical Engineering Journal, 2021, 422: 130119. doi: 10.1016/j.cej.2021.130119
|
[22] |
KHALIL B, ADAMOWSKI J, SHABBIR A, et al. A review: Dew water collection from radiative passive collectors to recent developments of active collectors [J]. Sustainable Water Resources Management, 2016, 2(1): 71-86. doi: 10.1007/s40899-015-0038-z
|
[23] |
CLUS O, ORTEGA P, MUSELLI M, et al. Study of dew water collection in humid tropical Islands [J]. Journal of Hydrology, 2008, 361(1/2): 159-171. doi: 10.1016/j.jhydrol.2008.07.038
|
[24] |
RAVEESH G, GOYAL R, TYAGI S K. Advances in atmospheric water generation technologies [J]. Energy Conversion and Management, 2021, 239: 114226. doi: 10.1016/j.enconman.2021.114226
|
[25] |
ZHAO D L, AILI A, ZHAI Y, et al. Radiative sky cooling: Fundamental principles, materials, and applications [J]. Applied Physics Reviews, 2019, 6(2): 021306. doi: 10.1063/1.5087281
|
[26] |
FAN X C, SHI K L, XIA Z L. Using multi-layer structure to improve the radiative cooling performance [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 251: 107052. doi: 10.1016/j.jqsrt.2020.107052
|
[27] |
MANDAL J, FU Y K, OVERVIG A C, et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling [J]. Science, 2018, 362(6412): 315-319. doi: 10.1126/science.aat9513
|
[28] |
HAECHLER I, PARK H, SCHNOERING G, et al. Exploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphere [J]. Science Advances, 2021, 7(26): eabf3978. doi: 10.1126/sciadv.abf3978
|
[29] |
DONG M H, ZHANG Z, SHI Y, et al. Fundamental limits of the dew-harvesting technology [J]. Nanoscale and Microscale Thermophysical Engineering, 2020, 24(1): 43-52. doi: 10.1080/15567265.2020.1722300
|
[30] |
TU R, HWANG Y. Reviews of atmospheric water harvesting technologies [J]. Energy, 2020, 201: 117630. doi: 10.1016/j.energy.2020.117630
|
[31] |
TU Y D, WANG R Z, ZHANG Y N, et al. Progress and expectation of atmospheric water harvesting [J]. Joule, 2018, 2(8): 1452-1475. doi: 10.1016/j.joule.2018.07.015
|
[32] |
赵亚, 石启龙, 王相友, 等. 温湿度对不同吸湿剂吸湿特性及动力学模型影响 [J]. 现代食品科技, 2014, 30(12): 158-163,193.
ZHAO Y, SHI Q L, WANG X Y, et al. Effect of temperature and relative humidity on absorption characteristics and kinetic models of different absorbent [J]. Modern Food Science and Technology, 2014, 30(12): 158-163,193(in Chinese).
|
[33] |
罗经发, 邓立生, 李兴, 等. 硅胶/氯化锂复合涂层的制备及其吸湿性能研究 [J]. 制冷, 2020, 39(2): 8-13.
LUO J F, DENG L S, LI X, et al. Study on preparation of silica gel/lithium chloride composite coated and dehumidification performance [J]. Refrigeration, 2020, 39(2): 8-13(in Chinese).
|
[34] |
ENTEZARI A, EJEIAN M, WANG R Z. Extraordinary air water harvesting performance with three phase sorption [J]. Materials Today Energy, 2019, 13: 362-373. doi: 10.1016/j.mtener.2019.07.001
|
[35] |
GUO Y H, BAE J, FANG Z W, et al. Hydrogels and hydrogel-derived materials for energy and water sustainability [J]. Chemical Reviews, 2020, 120(15): 7642-7707. doi: 10.1021/acs.chemrev.0c00345
|
[36] |
SHI Y, ILIC O, ATWATER H A, et al. All-day fresh water harvesting by microstructured hydrogel membranes [J]. Nature Communications, 2021, 12: 2797. doi: 10.1038/s41467-021-23174-0
|
[37] |
王雯雯, 葛天舒, 代彦军, 等. 太阳能吸附式空气取水研究现状 [J]. 太阳能, 2020(1): 33-46.
WANG W W, GE T S, DAI Y J, et al. Status of solar-driven sorption-based atmosphere water harvesting [J]. Solar Energy, 2020(1): 33-46(in Chinese).
|
[38] |
ÖHRSTRÖM L, AMOMBO NOA F M. Metal-organic frameworks[M]. American Chemical Society, 2021.
|
[39] |
LI H L, EDDAOUDI M, GROY T L, et al. Establishing microporosity in open metal-organic frameworks: Gas sorption isotherms for Zn(BDC) (BDC = 1, 4-benzenedicarboxylate) [J]. Journal of the American Chemical Society, 1998, 120(33): 8571-8572. doi: 10.1021/ja981669x
|
[40] |
YAGHI O M. , KALMUTZKI M J, DIERCKS C S. Introduction to reticular chemistry: Metal-organic frameworks and covalent organic frameworks[M]. Weinheim Germany: Wiley‐VCH Verlag GmbH & Co. KGaA, 2019. https://www.doc88.com/p-8819153101802.html
|
[41] |
ABAZARI R, MAHJOUB A R, SHARIATI J. Synthesis of a nanostructured pillar MOF with high adsorption capacity towards antibiotics pollutants from aqueous solution [J]. Journal of Hazardous Materials, 2019, 366: 439-451. doi: 10.1016/j.jhazmat.2018.12.030
|
[42] |
武凯莉, 康永锋. 金属有机框架材料的可控合成概述 [J]. 化工新型材料, 2022, 50(3): 226-229,235.
WU K L, KANG Y F. Overview of controllable synthesis of metal-organic framework materials [J]. New Chemical Materials, 2022, 50(3): 226-229,235(in Chinese).
|
[43] |
NGUYEN H T T, TRAN K N T, TAN L V, et al. Microwave-assisted solvothermal synthesis of bimetallic metal-organic framework for efficient photodegradation of organic dyes [J]. Materials Chemistry and Physics, 2021, 272: 125040. doi: 10.1016/j.matchemphys.2021.125040
|
[44] |
YANG H M, LIU X, SONG X L, et al. In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBr [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(12): 3987-3994. doi: 10.1016/S1003-6326(15)64047-X
|
[45] |
陈丹丹, 衣晓虹, 王崇臣. 机械化学法制备金属-有机骨架及其复合物研究进展 [J]. 无机化学学报, 2020, 36(10): 1805-1821.
CHEN D D, YI X H, WANG C C. Preparation of metal-organic frameworks and their composites using mechanochemical methods [J]. Chinese Journal of Inorganic Chemistry, 2020, 36(10): 1805-1821(in Chinese).
|
[46] |
李杰. 科学知识图谱原理及应用[M]. 北京: 高等教育出版社, 2018.
LI J. Principles and applications of mapping knowledge domains[M]. Beijing: Higher Education Press, 2018(in Chinese).
|
[47] |
WANG B, CÔTÉ A P, FURUKAWA H, et al. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs [J]. Nature, 2008, 453(7192): 207-211. doi: 10.1038/nature06900
|
[48] |
AHNFELDT T, GUNZELMANN D, LOISEAU T, et al. Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology [J]. Inorganic Chemistry, 2009, 48(7): 3057-3064. doi: 10.1021/ic8023265
|
[49] |
KONDO M, OKUBO T, ASAMI A, et al. Rational synthesis of stable channel-like cavities with methane gas adsorption properties: [{Cu2(pzdc)2(L)}n](pzdc=pyrazine-2,3-dicarboxylate; L=a pillar ligand) [J]. Angewandte Chemie International Edition, 1999, 38(1/2): 140-143. doi: 10.1002/(SICI)1521-3773(19990115)38:1/2<140::AID-ANIE140>3.0.CO;2-9
|
[50] |
CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability [J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. doi: 10.1021/ja8057953
|
[51] |
MA S Q, ZHOU H C. A metal-organic framework with entatic metal centers exhibiting high gas adsorption affinity [J]. Journal of the American Chemical Society, 2006, 128(36): 11734-11735. doi: 10.1021/ja063538z
|
[52] |
LIU J, WANG Y, BENIN A I, et al. CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC [J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2010, 26(17): 14301-14307. doi: 10.1021/la102359q
|
[53] |
ZHOU X Y, LU H Y, ZHAO F, et al. Atmospheric water harvesting: A review of material and structural designs [J]. ACS Materials Letters, 2020, 2(7): 671-684. doi: 10.1021/acsmaterialslett.0c00130
|
[54] |
YUAN S, FENG L, WANG K C, et al. Stable metal-organic frameworks: Design, synthesis, and applications [J]. Advanced Materials, 2018, 30(37): 1704303. doi: 10.1002/adma.201704303
|
[55] |
WANG S Z, MCGUIRK C M, D'AQUINO A, et al. Metal-organic framework nanoparticles [J]. Advanced Materials, 2018, 30(37): 1800202. doi: 10.1002/adma.201800202
|
[56] |
YAGHI O M. The reticular chemist [J]. Nano Letters, 2020, 20(12): 8432-8434. doi: 10.1021/acs.nanolett.0c04327
|
[57] |
KALMUTZKI M J, HANIKEL N, YAGHI O M. Secondary building units as the turning point in the development of the reticular chemistry of MOFs [J]. Science Advances, 2018, 4(10): eaat9180. doi: 10.1126/sciadv.aat9180
|
[58] |
BURTCH N C, JASUJA H, WALTON K S. Water stability and adsorption in metal-organic frameworks [J]. Chemical Reviews, 2014, 114(20): 10575-10612. doi: 10.1021/cr5002589
|
[59] |
CANIVET J, FATEEVA A, GUO Y M, et al. Water adsorption in MOFs: Fundamentals and applications [J]. Chemical Society Reviews, 2014, 43(16): 5594-5617. doi: 10.1039/C4CS00078A
|
[60] |
KANO S, MEKARU H. Liquid-dependent impedance induced by vapor condensation and percolation in nanoparticle film [J]. Nanotechnology, 2021, 33(10): 105702. doi: 10.1088/1361-6528/ac3d63
|
[61] |
EJEIAN M, WANG R Z. Adsorption-based atmospheric water harvesting [J]. Joule, 2021, 5(7): 1678-1703. doi: 10.1016/j.joule.2021.04.005
|
[62] |
PAN T T, YANG K J, HAN Y. Recent progress of atmospheric water harvesting using metal-organic frameworks [J]. Chemical Research in Chinese Universities, 2020, 36(1): 33-40. doi: 10.1007/s40242-020-9093-6
|
[63] |
FARHA O K, ERYAZICI I, JEONG N C, et al. Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit? [J]. Journal of the American Chemical Society, 2012, 134(36): 15016-15021. doi: 10.1021/ja3055639
|
[64] |
WANG M, YU F Q. High-throughput screening of metal-organic frameworks for water harvesting from air [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 624: 126746. doi: 10.1016/j.colsurfa.2021.126746
|
[65] |
HANIKEL N, PEI X K, CHHEDA S, et al. Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting [J]. Science, 2021, 374(6566): 454-459. doi: 10.1126/science.abj0890
|
[66] |
SOLOVYEVA M V, SHKATULOV A I, GORDEEVA L G, et al. Water vapor adsorption on CAU-10- X: Effect of functional groups on adsorption equilibrium and mechanisms [J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2021, 37(2): 693-702. doi: 10.1021/acs.langmuir.0c02729
|
[67] |
YANAGITA K, HWANG J, SHAMIM J A, et al. Kinetics of water vapor adsorption and desorption in MIL-101 metal–organic frameworks [J]. The Journal of Physical Chemistry C, 2019, 123(1): 387-398. doi: 10.1021/acs.jpcc.8b08211
|
[68] |
NEMIWAL M, KUMAR D. Metal organic frameworks as water harvester from air: Hydrolytic stability and adsorption isotherms [J]. Inorganic Chemistry Communications, 2020, 122: 108279. doi: 10.1016/j.inoche.2020.108279
|
[69] |
XU W T, YAGHI O M. Metal-organic frameworks for water harvesting from air, anywhere, anytime [J]. ACS Central Science, 2020, 6(8): 1348-1354. doi: 10.1021/acscentsci.0c00678
|
[70] |
FATHIEH F, KALMUTZKI M J, KAPUSTIN E A, et al. Practical water production from desert air [J]. Science Advances, 2018, 4(6): eaat3198. doi: 10.1126/sciadv.aat3198
|
[71] |
RIETH A J, WRIGHT A M, SKORUPSKII G, et al. Record-setting sorbents for reversible water uptake by systematic anion exchanges in metal-organic frameworks [J]. Journal of the American Chemical Society, 2019, 141(35): 13858-13866. doi: 10.1021/jacs.9b06246
|
[72] |
RIETH A J, YANG S, WANG E N, et al. Record atmospheric fresh water capture and heat transfer with a material operating at the water uptake reversibility limit [J]. ACS Central Science, 2017, 3(6): 668-672. doi: 10.1021/acscentsci.7b00186
|
[73] |
THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) [J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069. doi: 10.1515/pac-2014-1117
|
[74] |
HU Y, FANG Z, MA X, et al. CaCl2 Nanocrystals decorated photothermal Fe-ferrocene MOFs hollow microspheres for atmospheric water harvesting [J]. Applied Materials Today, 2021, 23: 101076. doi: 10.1016/j.apmt.2021.101076
|
[75] |
TOULOUMET Q, SILVESTER L, BOIS L, et al. Water sorption and heat storage in CaCl2 impregnated aluminium fumarate MOFs [J]. Solar Energy Materials and Solar Cells, 2021, 231: 111332. doi: 10.1016/j.solmat.2021.111332
|
[76] |
XU J X, LI T X, CHAO J W, et al. Efficient solar-driven water harvesting from arid air with metal-organic frameworks modified by hygroscopic salt [J]. Angewandte Chemie (International Ed. in English), 2020, 59(13): 5202-5210. doi: 10.1002/anie.201915170
|
[77] |
BURTCH N C, WALTON I M, HUNGERFORD J T, et al. In situ visualization of loading-dependent water effects in a stable metal–organic framework [J]. Nature Chemistry, 2020, 12(2): 186-192. doi: 10.1038/s41557-019-0374-y
|
[78] |
CHOI J, LIN L C, GROSSMAN J C. Role of structural defects in the water adsorption properties of MOF-801 [J]. The Journal of Physical Chemistry C, 2018, 122(10): 5545-5552. doi: 10.1021/acs.jpcc.8b00014
|
[79] |
ZHANG X, CHEN Z J, LIU X Y, et al. A historical overview of the activation and porosity of metal-organic frameworks [J]. Chemical Society Reviews, 2020, 49(20): 7406-7427. doi: 10.1039/D0CS00997K
|
[80] |
KRAJNC A, VARLEC J, MAZAJ M, et al. Superior performance of microporous aluminophosphate with LTA topology in solar-energy storage and heat reallocation [J]. Advanced Energy Materials, 2017, 7(11): 1601815. doi: 10.1002/aenm.201601815
|
[81] |
ZHU Z K, LIN Y Y, LIN L D, et al. A rare 3D porous inorganic-organic hybrid polyoxometalate framework based on a cubic polyoxoniobate-cupric-complex cage with a high water vapor adsorption capacity [J]. Inorganic Chemistry, 2020, 59(17): 11925-11929. doi: 10.1021/acs.inorgchem.0c01826
|
[82] |
TOWSIF ABTAB S M, ALEZI D, BHATT P M, et al. Reticular chemistry in action: A hydrolytically stable MOF capturing twice its weight in adsorbed water [J]. Chem, 2018, 4(1): 94-105. doi: 10.1016/j.chempr.2017.11.005
|
[83] |
WANG J Y, WANG R Z, WANG L W, et al. A high efficient semi-open system for fresh water production from atmosphere [J]. Energy, 2017, 138: 542-551. doi: 10.1016/j.energy.2017.07.106
|
[84] |
YANG T Y, GE L R, GE T S, et al. Binder-free growth of aluminum-based metal-organic frameworks on aluminum substrate for enhanced water adsorption capacity [J]. Advanced Functional Materials, 2022, 32(5): 2105267. doi: 10.1002/adfm.202105267
|
[85] |
TAN B, LUO Y, LIANG X, et al. In Situ synthesis and performance of aluminum fumarate metal–organic framework monolithic adsorbent for water adsorption [J]. Industrial & Engineering Chemistry Research, 2019, 58(34): 15712-15720. doi: 10.1021/acs.iecr.9b03172
|
[86] |
KALMUTZKI M J, DIERCKS C S, YAGHI O M. Metal-organic frameworks for water harvesting from air [J]. Advanced Materials, 2018, 30(37): 1704304. doi: 10.1002/adma.201704304
|
[87] |
KIM H, RAO S R, KAPUSTIN E A, et al. Adsorption-based atmospheric water harvesting device for arid climates [J]. Nature Communications, 2018, 9: 1191. doi: 10.1038/s41467-018-03162-7
|
[88] |
FURUKAWA H, GÁNDARA F, ZHANG Y B, et al. Water adsorption in porous metal-organic frameworks and related materials [J]. Journal of the American Chemical Society, 2014, 136(11): 4369-4381. doi: 10.1021/ja500330a
|
[89] |
KAYAL S, CHAKRABORTY A, TEO H W B. Green synthesis and characterization of aluminium fumarate metal-organic framework for heat transformation applications [J]. Materials Letters, 2018, 221: 165-167. doi: 10.1016/j.matlet.2018.03.099
|
[90] |
LENZEN D, ZHAO J J, ERNST S J, et al. A metal-organic framework for efficient water-based ultra-low-temperature-driven cooling [J]. Nature Communications, 2019, 10: 3025. doi: 10.1038/s41467-019-10960-0
|
[91] |
PERMYAKOVA A, SKRYLNYK O, COURBON E, et al. Synthesis optimization, shaping, and heat reallocation evaluation of the hydrophilic metal-organic framework MIL-160(Al) [J]. ChemSusChem, 2017, 10(7): 1419-1426. doi: 10.1002/cssc.201700164
|
[92] |
ASIM N, BADIEI M, ALGHOUL M A, et al. Sorbent-based air water-harvesting systems: Progress, limitation, and consideration [J]. Reviews in Environmental Science and Bio/Technology, 2021, 20(1): 257-279. doi: 10.1007/s11157-020-09558-6
|
[93] |
YANG K J, PAN T T, LEI Q, et al. A roadmap to sorption-based atmospheric water harvesting: From molecular sorption mechanism to sorbent design and system optimization [J]. Environmental Science & Technology, 2021, 55(10): 6542-6560. doi: 10.1021/acs.est.1c00257
|
[94] |
BAGHERI F. Performance investigation of atmospheric water harvesting systems [J]. Water Resources and Industry, 2018, 20: 23-28. doi: 10.1016/j.wri.2018.08.001
|
[95] |
LI Z, XU X, SHENG X, et al. Solar-powered sustainable water production: State-of-the-art technologies for sunlight-energy-water Nexus [J]. ACS Nano, 2021, 15: 12535-12566. doi: 10.1021/acsnano.1c01590
|
[96] |
EJEIAN M, ENTEZARI A, WANG R Z. Solar powered atmospheric water harvesting with enhanced LiCl/MgSO4/ACF composite [J]. Applied Thermal Engineering, 2020, 176: 115396. doi: 10.1016/j.applthermaleng.2020.115396
|
[97] |
HANIKEL N, PRÉVOT M S, YAGHI O M. MOF water harvesters [J]. Nature Nanotechnology, 2020, 15(5): 348-355. doi: 10.1038/s41565-020-0673-x
|
[98] |
WU Q N, SU W, LI Q Q, et al. Enabling continuous and improved solar-driven atmospheric water harvesting with Ti3C2-incorporated metal-organic framework monoliths [J]. ACS Applied Materials & Interfaces, 2021, 13(32): 38906-38915. doi: 10.1021/acsami.1c10536
|
[99] |
ZHANG J. , LI P., ZHANG X., et al. Water adsorption properties and applications of stable metal-organic frameworks [J]. Acta Chimica Sinica, 2020, 78(7): 597-612. doi: 10.6023/A20050153
|
[100] |
LI D, LIU X, LI W, et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling [J]. Nature Nanotechnology, 2021, 16(2): 153-158. doi: 10.1038/s41565-020-00800-4
|
[101] |
KOU J, JURADO Z, CHEN Z, et al. Daytime radiative cooling using near-black infrared emitters [J]. ACS Photonics, 2017, 4(3): 626-630. doi: 10.1021/acsphotonics.6b00991
|
[102] |
MAO J, CHEN G, REN Z F. Thermoelectric cooling materials [J]. Nature Materials, 2021, 20(4): 454-461. doi: 10.1038/s41563-020-00852-w
|
[103] |
KADHIM T, ABBAS A, JAWAD KADHIM H. Experimental study of atmospheric water collection powered by solar energy using the Peltier effect [J]. IOP Conference Series Materials Science and Engineering, 2020, 671(1): 012155. doi: 10.1088/1757-899X/671/1/012155
|
[104] |
BERGMAIR D, METZ S J, de LANGE H C, et al. System analysis of membrane facilitated water generation from air humidity [J]. Desalination, 2014, 339: 26-33. doi: 10.1016/j.desal.2014.02.007
|
[105] |
BERGMAIR D, METZ S J, de LANGE H C, et al. A low pressure recirculated sweep stream for energy efficient membrane facilitated humidity harvesting [J]. Separation and Purification Technology, 2015, 150: 112-118. doi: 10.1016/j.seppur.2015.06.042
|
[106] |
NGUYEN H L, HANIKEL N, LYLE S J, et al. A porous covalent organic framework with voided square grid topology for atmospheric water harvesting [J]. Journal of the American Chemical Society, 2020, 142(5): 2218-2221. doi: 10.1021/jacs.9b13094
|
[107] |
YAO H Z, ZHANG P P, HUANG Y X, et al. Highly efficient clean water production from contaminated air with a wide humidity range [J]. Advanced Materials, 2020, 32(6): 1905875. doi: 10.1002/adma.201905875
|
[108] |
GUO Z Q, ZHANG L, MONGA D, et al. Hydrophilic slippery surface enabled coarsening effect for rapid water harvesting [J]. Cell Reports Physical Science, 2021, 2(4): 100387. doi: 10.1016/j.xcrp.2021.100387
|
[109] |
AHLERS M, BUCK-EMDEN A, BART H J. Is dropwise condensation feasible?A review on surface modifications for continuous dropwise condensation and a profitability analysis [J]. Journal of Advanced Research, 2018, 16: 1-13. doi: 10.1016/j.jare.2018.11.004
|
[110] |
GORDEEVA L G, TU Y D, PAN Q W, et al. Metal-organic frameworks for energy conversion and water harvesting: A bridge between thermal engineering and material science [J]. Nano Energy, 2021, 84: 105946. doi: 10.1016/j.nanoen.2021.105946
|