[1] SENGUL A B, ASMATULU E. Toxicity of metal and metal oxide nanoparticles: A review [J]. Environmental Chemistry Letters, 2020, 18(5): 1659-1683. doi: 10.1007/s10311-020-01033-6
[2] 朱慧萍, 方凤满, 林跃胜, 等. 荻港镇某水泥厂周边不同介质中重金属含量、来源及潜在生态风险分析 [J]. 环境化学, 2017, 36(12): 2711-2718. doi: 10.7524/j.issn.0254-6108.2017032302 ZHU H P, FANG F M, LIN Y S, et al. Distribution, source apportionment and potential ecological risk assessment of heavy metals in different environmental media around a cement factory in Digang Town [J]. Environmental Chemistry, 2017, 36(12): 2711-2718(in Chinese). doi: 10.7524/j.issn.0254-6108.2017032302
[3] MEESTERS J A J, QUIK J T K, KOELMANS A A, et al. Multimedia environmental fate and speciation of engineered nanoparticles: A probabilistic modeling approach [J]. Environmental Science:Nano, 2016, 3(4): 715-727. doi: 10.1039/C6EN00081A
[4] SHARIFAN H, MA X M, MOORE J M, et al. Zinc oxide nanoparticles alleviated the bioavailability of cadmium and lead and changed the uptake of iron in hydroponically grown lettuce (Lactuca sativa L. var. longifolia) [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16401-16409.
[5] LIU W Z, WENG C Z, ZHENG J Y, et al. Emerging investigator series: Treatment and recycling of heavy metals from nanosludge [J]. Environmental Science:Nano, 2019, 6(6): 1657-1673. doi: 10.1039/C9EN00120D
[6] ABUHATAB S, EL-QANNI A, AL-QALAQ H, et al. Effective adsorptive removal of Zn2+, Cu2+, and Cr3+ heavy metals from aqueous solutions using silica-based embedded with NiO and MgO nanoparticles [J]. Journal of Environmental Management, 2020, 268: 110713. doi: 10.1016/j.jenvman.2020.110713
[7] 李梓萌, 李肖乾, 张文慧, 等. 重金属复合污染对生物影响的研究进展 [J]. 环境化学, 2021, 40(11): 3331-3343. doi: 10.7524/j.issn.0254-6108.2021033107 LI Z M, LI X Q, ZHANG W H, et al. Research progress on the effects of heavy metal compound pollution on organisms [J]. Environmental Chemistry, 2021, 40(11): 3331-3343(in Chinese). doi: 10.7524/j.issn.0254-6108.2021033107
[8] VARDHAN K H, KUMAR P S, PANDA R C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives [J]. Journal of Molecular Liquids, 2019, 290: 111197. doi: 10.1016/j.molliq.2019.111197
[9] HRISTOZOV D, MALSCH I. Hazards and risks of engineered nanoparticles for the environment and human health [J]. Sustainability, 2009, 1(4): 1161-1194. doi: 10.3390/su1041161
[10] HE H, ZOU Z, WANG B, et al. Copper oxide nanoparticles induce oxidative DNA damage and cell death via copper ion-mediated P38 MAPK activation in vascular endothelial cells [J]. International Journal of Nanomedicine, 2020, 15: 3291-3302. doi: 10.2147/IJN.S241157
[11] RUSTENBIL J W, POORTVLIET T C W. Copper and zinc in estuarine water: Chemical speciation in relation to bioavailability to the marine planktonic diatomDitylum brightwellii [J]. Environmental Toxicology and Chemistry, 1992, 11(11): 1615-1625.
[12] XU X, LI Y, WANG Y, et al. Assessment of toxic interactions of heavy metals in multi-component mixtures using sea urchin embryo-larval bioassay [J]. Toxicology in Vitro, 2011, 25(1): 294-300. doi: 10.1016/j.tiv.2010.09.007
[13] BATLEY G E, KIRBY J K, MCLAUGHLIN M J. Fate and risks of nanomaterials in aquatic and terrestrial environments [J]. Accounts of Chemical Research, 2013, 46(3): 854-862. doi: 10.1021/ar2003368
[14] MIAO W, ZHU B R, XIAO X H, et al. Effects of titanium dioxide nanoparticles on lead bioconcentration and toxicity on thyroid endocrine system and neuronal development in zebrafish larvae [J]. Aquatic Toxicology, 2015, 161: 117-126. doi: 10.1016/j.aquatox.2015.02.002
[15] WANG J J, DAI H, NIE Y G, et al. TiO2 nanoparticles enhance bioaccumulation and toxicity of heavy metals in Caenorhabditis elegans via modification of local concentrations during the sedimentation process [J]. Ecotoxicology and Environmental Safety, 2018, 162: 160-169. doi: 10.1016/j.ecoenv.2018.06.051
[16] TAN L Y, HUANG B, XU S, et al. Aggregation reverses the carrier effects of TiO2 nanoparticles on cadmium accumulation in the waterflea Daphnia magna [J]. Environmental Science & Technology, 2017, 51(2): 932-939.
[17] 杨蓉, 李娜, 饶凯锋, 等. 环境混合物的联合毒性研究方法 [J]. 生态毒理学报, 2016, 11(1): 1-13. YANG R, LI N, RAO K F, et al. Review on methodology for environmental mixture toxicity study [J]. Asian Journal of Ecotoxicology, 2016, 11(1): 1-13(in Chinese).
[18] 曾鸣, 林志芬, 尹大强, 等. 混合污染物联合毒性研究进展 [J]. 环境科学与技术, 2009, 32(2): 80-86. doi: 10.3969/j.issn.1003-6504.2009.02.021 ZENG M, LIN Z F, YIN D Q, et al. Progress on joint effect of mixture pollutants [J]. Environmental Science & Technology, 2009, 32(2): 80-86(in Chinese). doi: 10.3969/j.issn.1003-6504.2009.02.021
[19] BERENBAUM M C. A method for testing for synergy with any number of agents [J]. The Journal of Infectious Diseases, 1978, 137(2): 122-130. doi: 10.1093/infdis/137.2.122
[20] 莫凌云, 梁丽营, 覃礼堂, 等. 定性与定量评估4种重金属及2种农药混合物对费氏弧菌的毒性相互作用 [J]. 生态毒理学报, 2018, 13(1): 251-260. doi: 10.7524/AJE.1673-5897.20170115002 MO L Y, LIANG L Y, QIN L T, et al. Qualitative and quantitative assessment for the toxicity interaction of mixtures of four heavy metals and two pesticides on Vibrio fischeri [J]. Asian Journal of Ecotoxicology, 2018, 13(1): 251-260(in Chinese). doi: 10.7524/AJE.1673-5897.20170115002
[21] 李小朋, 张琛, 李娟, 等. 基于析因设计的多种重金属对发光菌联合毒性研究 [J]. 环境科学与技术, 2012, 35(12): 169-174. doi: 10.3969/j.issn.1003-6504.2012.12.036 LI X P, ZHANG C, LI J, et al. Joint toxicity of multi-heavy-metal to Photobacterium phosphoreum based on factorial design [J]. Environmental Science & Technology, 2012, 35(12): 169-174(in Chinese). doi: 10.3969/j.issn.1003-6504.2012.12.036
[22] LOEWE S. Die quantitativen probleme der pharmakologie [J]. Ergebnisse Der Physiologie, 1928, 27(1): 47-187. doi: 10.1007/BF02322290
[23] BLISS C I. The toxicity of poisons applied jointly1 [J]. Annals of Applied Biology, 1939, 26(3): 585-615. doi: 10.1111/j.1744-7348.1939.tb06990.x
[24] 刘砥, 曾鸿鹄, 邓杨, 等. 二元重金属混合物联合胁迫斜生栅藻毒性研究 [J]. 科学技术与工程, 2019, 19(22): 374-383. doi: 10.3969/j.issn.1671-1815.2019.22.056 LIU D, ZENG H H, DENG Y, et al. Combined stress toxicity of binary heavy metal mixture to Scenedesmus obliquus [J]. Science Technology and Engineering, 2019, 19(22): 374-383(in Chinese). doi: 10.3969/j.issn.1671-1815.2019.22.056
[25] YUAN Y, WU Y, GE X L, et al. In vitro toxicity evaluation of heavy metals in urban air particulate matter on human lung epithelial cells [J]. Science of the Total Environment, 2019, 678: 301-308. doi: 10.1016/j.scitotenv.2019.04.431
[26] 邓杨, 覃礼堂, 曾鸿鹄, 等. 基于主成分回归的整合模型预测重金属混合物毒性 [J]. 中国环境科学, 2018, 38(5): 1970-1978. doi: 10.3969/j.issn.1000-6923.2018.05.043 DENG Y, QIN L T, ZENG H H, et al. Prediction of toxicity of heavy metal mixture by integrated model based on principal component regression [J]. China Environmental Science, 2018, 38(5): 1970-1978(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.05.043
[27] CHEN J D, JIANG Y, XU C, et al. Comparison of two mathematical prediction models in assessing the toxicity of heavy metal mixtures to the feeding of the nematode Caenorhabditis elegans [J]. Ecotoxicology and Environmental Safety, 2013, 94: 73-79. doi: 10.1016/j.ecoenv.2013.04.026
[28] SON J, LEE Y S, KIM Y, et al. Joint toxic action of binary metal mixtures of copper, Manganese and nickel to Paronychiurus kimi (Collembola) [J]. Ecotoxicology and Environmental Safety, 2016, 132: 164-169. doi: 10.1016/j.ecoenv.2016.05.034
[29] NYS C, VERSIEREN L, CORDERY K I, et al. Systematic evaluation of chronic metal-mixture toxicity to three species and implications for risk assessment [J]. Environmental Science & Technology, 2017, 51(8): 4615-4623.
[30] KOPPEL D J, ADAMS M S, KING C K, et al. Chronic toxicity of an environmentally relevant and equitoxic ratio of five metals to two Antarctic marine microalgae shows complex mixture interactivity [J]. Environmental Pollution, 2018, 242: 1319-1330. doi: 10.1016/j.envpol.2018.07.110
[31] GOPALAPILLAI Y, HALE B A. Internal versus External Dose for Describing Ternary Metal Mixture (Ni, Cu, Cd) Chronic Toxicity to Lemna minor [J]. Environmental Science & Technology, 2017, 51(9): 5233-5241.
[32] TRAUDT E M, RANVILLE J F, MEYER J S. Acute toxicity of ternary Cd-Cu-Ni and Cd-Ni-Zn mixtures to Daphnia magna: Dominant metal pairs change along a concentration gradient [J]. Environmental Science & Technology, 2017, 51(8): 4471-4481.
[33] MO L Y, ZHENG M Y, QIN M, et al. Quantitative characterization of the toxicities of Cd-Ni and Cd-Cr binary mixtures using combination index method [J]. BioMed Research International, 2016, 2016: 4158451.
[34] GONG B, HE E K, QIU H, et al. Phytotoxicity of individual and binary mixtures of rare earth elements (Y, La, and Ce) in relation to bioavailability [J]. Environmental Pollution, 2019, 246: 114-121. doi: 10.1016/j.envpol.2018.11.106
[35] CRÉMAZY A, BRIX K V, WOOD C M. Chronic toxicity of binary mixtures of six metals (Ag, Cd, Cu, Ni, Pb, and Zn) to the great pond snail Lymnaea stagnalis [J]. Environmental Science & Technology, 2018, 52(10): 5979-5988.
[36] 马正学, 王业秋, 宁应之, 等. Hg2+, Ni2+和Cu2+对嗜热四膜虫的急性及联合毒性效应 [J]. 环境科学研究, 2008, 21(4): 174-178. MA Z X, WANG Y Q, NING Y Z, et al. Acute and joint toxicities of Hg2+, Ni2+ and Cu2+ to Tetrahymena thermophila [J]. Research of Environmental Sciences, 2008, 21(4): 174-178(in Chinese).
[37] 刘树深, 刘玲, 陈浮. 浓度加和模型在化学混合物毒性评估中的应用 [J]. 化学学报, 2013, 71(10): 1335-1340. doi: 10.6023/A13040355 LIU S S, LIU L, CHEN F. Application of the concentration addition model in the assessment of chemical mixture toxicity [J]. Acta Chimica Sinica, 2013, 71(10): 1335-1340(in Chinese). doi: 10.6023/A13040355
[38] 李恺, 刘树深, 屈锐. 组合指数在环境混合物联合毒性研究中的初步应用 [J]. 生态毒理学报, 2017, 12(3): 62-71. LI K, LIU S S, QU R. Application of the combination index in the assessment of combined toxicity of environmental mixture [J]. Asian Journal of Ecotoxicology, 2017, 12(3): 62-71(in Chinese).
[39] MARKING L L. Method for assessing additive toxicity of chemical mixtures[M]//Aquatic Toxicology and Hazard Evaluation. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2009: 99-99-10.
[40] KÖNEMANN H. Fish toxicity tests with mixtures of more than two chemicals: A proposal for a quantitative approach and experimental results [J]. Toxicology, 1981, 19(3): 229-238. doi: 10.1016/0300-483X(81)90132-3
[41] WANG Y H, CHEN C, QIAN Y Z, et al. Ternary toxicological interactions of insecticides, herbicides, and a heavy metal on the earthworm Eisenia fetida [J]. Journal of Hazardous Materials, 2015, 284: 233-240. doi: 10.1016/j.jhazmat.2014.11.017
[42] HEYS K A, SHORE R F, PEREIRA M G, et al. Risk assessment of environmental mixture effects [J]. RSC Advances, 2016, 6(53): 47844-47857. doi: 10.1039/C6RA05406D
[43] QIN L T, LIU S S, ZHANG J, et al. A novel model integrated concentration addition with independent action for the prediction of toxicity of multi-component mixture [J]. Toxicology, 2011, 280(3): 164-172. doi: 10.1016/j.tox.2010.12.007
[44] MWENSE M, WANG X Z, BUONTEMPO F V, et al. Prediction of noninteractive mixture toxicity of organic compounds based on a fuzzy set method [J]. Journal of Chemical Information and Computer Sciences, 2004, 44(5): 1763-1773. doi: 10.1021/ci0499368
[45] MWENSE M, WANG X Z, BUONTEMPO F V, et al. QSAR approach for mixture toxicity prediction using independent latent descriptors and fuzzy membership functions [J]. SAR and QSAR in Environmental Research, 2006, 17(1): 53-73. doi: 10.1080/10659360600562202
[46] RA J S, LEE B C, CHANG N I, et al. Estimating the combined toxicity by two-step prediction model on the complicated chemical mixtures from wastewater treatment plant effluents [J]. Environmental Toxicology and Chemistry, 2006, 25(8): 2107-2113. doi: 10.1897/05-484R.1
[47] OLMSTEAD A W, LEBLANC G A. Toxicity assessment of environmentally relevant pollutant mixtures using a heuristic model [J]. Integrated Environmental Assessment and Management, 2005, 1(2): 114-122. doi: 10.1897/IEAM_2004-005R.1
[48] KIM J, KIM S, SCHAUMANN G E. Development of a partial least squares-based integrated addition model for predicting mixture toxicity [J]. Human and Ecological Risk Assessment:an International Journal, 2014, 20(1): 174-200. doi: 10.1080/10807039.2012.754312
[49] RIDER C V, LEBLANC G A. An integrated addition and interaction model for assessing toxicity of chemical mixtures [J]. Toxicological Sciences, 2005, 87(2): 520-528. doi: 10.1093/toxsci/kfi247
[50] FENG J F, GAO Y F, JI Y J, et al. Quantifying the interactions among metal mixtures in toxicodynamic process with generalized linear model [J]. Journal of Hazardous Materials, 2018, 345: 97-106. doi: 10.1016/j.jhazmat.2017.11.013
[51] SPURGEON D J, JONES O A H, DORNE J L C M, et al. Systems toxicology approaches for understanding the joint effects of environmental chemical mixtures [J]. Science of the Total Environment, 2010, 408(18): 3725-3734. doi: 10.1016/j.scitotenv.2010.02.038
[52] CAMPBEL P. Interactions between trace metals and aquatic organisms: A critique of the Free-ion Activity Model [J]. Metal Speciation and Bioavailability in Aquatic Systems, 1995: 45-102.
[53] NIYOGI S, WOOD C M. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals [J]. Environmental Science & Technology, 2004, 38(23): 6177-6192.
[54] PLAYLE R C. Using multiple metal-gill binding models and the toxic unit concept to help reconcile multiple-metal toxicity results [J]. Aquatic Toxicology, 2004, 67(4): 359-370. doi: 10.1016/j.aquatox.2004.01.017
[55] WU M Y, WANG X D, JIA Z G, et al. Modeling acute toxicity of metal mixtures to wheat (Triticum aestivum L. ) using the biotic ligand model-based toxic units method [J]. Scientific Reports, 2017, 7: 9443. doi: 10.1038/s41598-017-09940-5
[56] WANG X D, JI D X, CHEN X L, et al. Extended biotic ligand model for predicting combined Cu-Zn toxicity to wheat (Triticum aestivum L. ): Incorporating the effects of concentration ratio, major cations and pH [J]. Environmental Pollution, 2017, 230: 210-217. doi: 10.1016/j.envpol.2017.06.037
[57] LIU Y, VIJVER M G, PEIJNENBURG W J G M. Comparing three approaches in extending biotic ligand models to predict the toxicity of binary metal mixtures (Cu-Ni, Cu-Zn and Cu-Ag) to lettuce (Lactuca sativa L. ) [J]. Chemosphere, 2014, 112: 282-288. doi: 10.1016/j.chemosphere.2014.04.077
[58] JAGER T, ALBERT C, PREUSS T G, et al. General unified threshold model of survival - a toxicokinetic-toxicodynamic framework for ecotoxicology [J]. Environmental Science & Technology, 2011, 45(7): 2529-2540.
[59] GAO Y F, FENG J F, WANG C C, et al. Modeling interactions and toxicity of Cu-Zn mixtures to zebrafish larvae [J]. Ecotoxicology and Environmental Safety, 2017, 138: 146-153. doi: 10.1016/j.ecoenv.2016.12.028
[60] GAO Y F, FENG J F, HAN F, et al. Application of biotic ligand and toxicokinetic-toxicodynamic modeling to predict the accumulation and toxicity of metal mixtures to zebrafish larvae [J]. Environmental Pollution, 2016, 213: 16-29. doi: 10.1016/j.envpol.2016.01.073
[61] JAGER T, VANDENBROUCK T, BAAS J, et al. A biology-based approach for mixture toxicity of multiple endpoints over the life cycle [J]. Ecotoxicology, 2010, 19(2): 351-361. doi: 10.1007/s10646-009-0417-z
[62] KOOIJMAN S A L M, SOUSA T, PECQUERIE L, et al. From food-dependent statistics to metabolic parameters, a practical Guide to the use of dynamic energy budget theory [J]. Biological Reviews of the Cambridge Philosophical Society, 2008, 83(4): 533-552. doi: 10.1111/j.1469-185X.2008.00053.x
[63] PÉRY A R R, GEFFARD A, CONRAD A, et al. Assessing the risk of metal mixtures in contaminated sediments on Chironomus riparius based on cytosolic accumulation [J]. Ecotoxicology and Environmental Safety, 2008, 71(3): 869-873. doi: 10.1016/j.ecoenv.2008.04.009
[64] XIE M D, SUN Y X, FENG J F, et al. Predicting the toxic effects of Cu and Cd on Chlamydomonas reinhardtii with a DEBtox model [J]. Aquatic Toxicology, 2019, 210: 106-116. doi: 10.1016/j.aquatox.2019.02.018
[65] MARGERIT A, GOMEZ E, GILBIN R. Dynamic energy-based modeling of uranium and cadmium joint toxicity to Caenorhabditis elegans [J]. Chemosphere, 2016, 146: 405-412. doi: 10.1016/j.chemosphere.2015.12.029
[66] KUNHIKRISHNAN A, SHON H K, BOLAN N S, et al. Sources, distribution, environmental fate, and ecological effects of nanomaterials in wastewater streams [J]. Critical Reviews in Environmental Science and Technology, 2015, 45(4): 277-318. doi: 10.1080/10643389.2013.852407
[67] ARMSTRONG D, BHARALI D. Oxidative stress and nanotechnology: Methods and protocols [J]. Methods in Molecular Biology, 2013: 155-164.
[68] MA H B, WALLIS L K, DIAMOND S, et al. Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution [J]. Environmental Pollution, 2014, 193: 165-172. doi: 10.1016/j.envpol.2014.06.027
[69] HAILAN W A, AL-ANAZI K M, FARAH M A, et al. Reactive oxygen species-mediated cytotoxicity in liver carcinoma cells induced by silver nanoparticles biosynthesized using Schinus molle extract [J]. Nanomaterials (Basel, Switzerland), 2022, 12(1): 161. doi: 10.3390/nano12010161
[70] RODRIGUEZ-YAÑEZ Y, MUÑOZ B, ALBORES A. Mechanisms of toxicity by carbon nanotubes [J]. Toxicology Mechanisms and Methods, 2013, 23(3): 178-195. doi: 10.3109/15376516.2012.754534
[71] GARCÍA-ALONSO J, KHAN F R, MISRA S K, et al. Cellular internalization of silver nanoparticles in gut epithelia of the estuarine polychaete Nereis diversicolor [J]. Environmental Science & Technology, 2011, 45(10): 4630-4636.
[72] WU D, ZHANG J J, DU W C, et al. Toxicity mechanism of cerium oxide nanoparticles on cyanobacteria Microcystis aeruginosa and their ecological risks [J]. Environmental Science and Pollution Research, 2022, 29(23): 34010-34018. doi: 10.1007/s11356-021-18090-1
[73] TSUGITA M, MORIMOTO N, NAKAYAMA M. SiO2 and TiO2 nanoparticles synergistically trigger macrophage inflammatory responses [J]. Particle and Fibre Toxicology, 2017, 14(1): 11. doi: 10.1186/s12989-017-0192-6
[74] TONG T Z, FANG K Q, THOMAS S A, et al. Chemical interactions between nano-ZnO and nano-TiO2 in a natural aqueous medium [J]. Environmental Science & Technology, 2014, 48(14): 7924-7932.
[75] TONG T Z, WILKE C M, WU J S, et al. Combined toxicity of nano-ZnO and nano-TiO2: From single- to multinanomaterial systems [J]. Environmental Science & Technology, 2015, 49(13): 8113-8123.
[76] YE N, WANG Z, FANG H, et al. Combined ecotoxicity of binary zinc oxide and copper oxide nanoparticles to Scenedesmus obliquus [J]. Journal of Environmental Science and Health, Part A, 2017, 52(6): 555-560. doi: 10.1080/10934529.2017.1284434
[77] LIU Y, BAAS J, PEIJNENBURG W J G M, et al. Evaluating the combined toxicity of Cu and ZnO nanoparticles: Utility of the concept of additivity and a nested experimental design [J]. Environmental Science & Technology, 2016, 50(10): 5328-5337.
[78] WANG Z, JIN S G, ZHANG F, et al. Combined toxicity of TiO2 nanospherical particles and TiO2 nanotubes to two microalgae with different morphology [J]. Nanomaterials, 2020, 10(12): 2559. doi: 10.3390/nano10122559
[79] LOPES S, PINHEIRO C, SOARES A M V M, et al. Joint toxicity prediction of nanoparticles and ionic counterparts: Simulating toxicity under a fate scenario [J]. Journal of Hazardous Materials, 2016, 320: 1-9. doi: 10.1016/j.jhazmat.2016.07.068
[80] ZHANG H J, SHI J H, SU Y L, et al. Acute toxicity evaluation of nanoparticles mixtures using luminescent bacteria [J]. Environmental Monitoring and Assessment, 2020, 192(8): 484. doi: 10.1007/s10661-020-08444-6
[81] KO K S, KOH D C, KONG I C. Toxicity evaluation of individual and mixtures of nanoparticles based on algal chlorophyll content and cell count [J]. Materials (Basel, Switzerland), 2018, 11(1): 121. doi: 10.3390/ma11010121
[82] ROUBEAU DUMONT E, ELGER A, AZÉMA C, et al. Cutting-edge spectroscopy techniques highlight toxicity mechanisms of copper oxide nanoparticles in the aquatic plant Myriophyllum spicatum [J]. Science of the Total Environment, 2022, 803: 150001. doi: 10.1016/j.scitotenv.2021.150001
[83] HOLMES A M, SONG Z, MOGHIMI H R, et al. Relative penetration of zinc oxide and zinc ions into human skin after application of different zinc oxide formulations [J]. ACS Nano, 2016, 10(2): 1810-1819. doi: 10.1021/acsnano.5b04148
[84] KADRI O, KARMOUS I, KHARBECH O, et al. Cu and CuO nanoparticles affected the germination and the growth of barley (Hordeum vulgare L. ) seedling [J]. Bulletin of Environmental Contamination and Toxicology, 2022, 108(3): 585-593. doi: 10.1007/s00128-021-03425-y
[85] YE N, WANG Z, WANG S, et al. Toxicity of mixtures of zinc oxide and graphene oxide nanoparticles to aquatic organisms of different trophic level: Particles outperform dissolved ions [J]. Nanotoxicology, 2018, 12(5): 423-438. doi: 10.1080/17435390.2018.1458342
[86] PUZYN T, LESZCZYNSKA D, LESZCZYNSKI J. Toward the development of â Nano-QSARsâ: Advances and challenges [J]. Small, 2009, 5(22): 2494-2509. doi: 10.1002/smll.200900179
[87] FOURCHES D, PU D, TROPSHA A. Exploring quantitative nanostructure-activity relationships (QNAR) modeling as a tool for predicting biological effects of manufactured nanoparticles [J]. Combinatorial Chemistry & High Throughput Screening, 2011, 14(3): 217-225.
[88] SIFONTE E P, CASTRO-SMIRNOV F A, JIMENEZ A A S, et al. Quantum mechanics descriptors in a nano-QSAR model to predict metal oxide nanoparticles toxicity in human keratinous cells [J]. Journal of Nanoparticle Research, 2021, 23(8): 161. doi: 10.1007/s11051-021-05288-0
[89] ROY J, ROY K. Assessment of toxicity of metal oxide and hydroxide nanoparticles using the QSAR modeling approach [J]. Environmental Science:Nano, 2021, 8(11): 3395-3407. doi: 10.1039/D1EN00733E
[90] THWALA M M, AFANTITIS A, PAPADIAMANTIS A G, et al. Using the Isalos platform to develop a (Q)SAR model that predicts metal oxide toxicity utilizing facet-based electronic, image analysis-based, and periodic table derived properties as descriptors [J]. Structural Chemistry, 2022, 33(2): 527-538. doi: 10.1007/s11224-021-01869-w
[91] CHEN G C, VIJVER M G, XIAO Y L, et al. A review of recent advances towards the development of (quantitative) structure-activity relationships for metallic nanomaterials [J]. Materials (Basel, Switzerland), 2017, 10(9): 1013. doi: 10.3390/ma10091013
[92] PUZYN T, RASULEV B, GAJEWICZ A, et al. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles [J]. Nature Nanotechnology, 2011, 6(3): 175-178. doi: 10.1038/nnano.2011.10
[93] WANG Z, VIJVER M G, PEIJNENBURG W J G M. Multiscale coupling strategy for nano ecotoxicology prediction [J]. Environmental Science & Technology, 2018, 52(14): 7598-7600.
[94] KOVALISHYN V, ABRAMENKO N, KOPERNYK I, et al. Modelling the toxicity of a large set of metal and metal oxide nanoparticles using the OCHEM platform [J]. Food and Chemical Toxicology, 2018, 112: 507-517. doi: 10.1016/j.fct.2017.08.008
[95] ZHANG F, WANG Z, VIJVER M G, et al. Prediction of the joint toxicity of multiple engineered nanoparticles: The integration of classic mixture models and In silico methods [J]. Chemical Research in Toxicology, 2021, 34(2): 176-178. doi: 10.1021/acs.chemrestox.0c00300
[96] XU W H, YANG T, LIU S B, et al. Insights into the Synthesis, types and application of iron Nanoparticles: The overlooked significance of environmental effects [J]. Environment International, 2022, 158: 106980. doi: 10.1016/j.envint.2021.106980
[97] DIBYANSHU K, CHHAYA T, RAYCHOUDHURY T. A review on the fate and transport behavior of engineered nanoparticles: Possibility of becoming an emerging contaminant in the groundwater [J]. International Journal of Environmental Science and Technology, 2022: 1-24.
[98] de BENI E, GIURLANI W, FABBRI L, et al. Graphene-based nanomaterials in the electroplating industry: A suitable choice for heavy metal removal from wastewater [J]. Chemosphere, 2022, 292: 133448. doi: 10.1016/j.chemosphere.2021.133448
[99] PARK C B, JUNG J W, BAEK M, et al. Mixture toxicity of metal oxide nanoparticles and silver ions on Daphnia magna [J]. Journal of Nanoparticle Research, 2019, 21(8): 166. doi: 10.1007/s11051-019-4606-2
[100] BAEK M J, SON J, PARK J, et al. Quantitative prediction of mixture toxicity of AgNO 3 and ZnO nanoparticles on Daphnia magna [J]. Science and Technology of Advanced Materials, 2020, 21(1): 333-345. doi: 10.1080/14686996.2020.1766343
[101] KUMAR R, KHAN M A, HAQ N. Application of carbon nanotubes in heavy metals remediation [J]. Critical Reviews in Environmental Science and Technology, 2014, 44(9): 1000-1035. doi: 10.1080/10643389.2012.741314
[102] 王萌, 刘珊珊, 龙奕, 等. 沉积物中不同浓度多壁碳纳米管对Cd和BDE-47生态毒性的影响 [J]. 环境科学学报, 2015, 35(12): 4150-4158. doi: 10.13671/j.hjkxxb.2015.0570 WANG M, LIU S S, LONG Y, et al. Impacts of multi-walled carbon nanotubes on ecotoxicity of Cd and BDE-47 in sediments [J]. Acta Scientiae Circumstantiae, 2015, 35(12): 4150-4158(in Chinese). doi: 10.13671/j.hjkxxb.2015.0570
[103] YANG W W, LI Y, MIAO A J, et al. Cd2+ toxicity as affected by bare TiO2 nanoparticles and their bulk counterpart [J]. Ecotoxicology and Environmental Safety, 2012, 85: 44-51. doi: 10.1016/j.ecoenv.2012.08.024
[104] YIN L Y, WANG Z, WANG S G, et al. Effects of graphene oxide and/or Cd2+ on seed germination, seedling growth, and uptake to Cd2+ in solution culture [J]. Water, Air, & Soil Pollution, 2018, 229(5): 151.
[105] HUA J, PEIJNENBURG W J G M, VIJVER M G. TiO2 nanoparticles reduce the effects of ZnO nanoparticles and Zn ions on zebrafish embryos (Danio rerio) [J]. NanoImpact, 2016, 2: 45-53. doi: 10.1016/j.impact.2016.06.005
[106] BIGORGNE E, FOUCAUD L, LAPIED E, et al. Ecotoxicological assessment of TiO2 byproducts on the earthworm Eisenia fetida [J]. Environmental Pollution, 2011, 159(10): 2698-2705. doi: 10.1016/j.envpol.2011.05.024
[107] FEDERICI G, SHAW B J, HANDY R D. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects [J]. Aquatic Toxicology, 2007, 84(4): 415-430. doi: 10.1016/j.aquatox.2007.07.009
[108] VENKATACHALAM P, JAYARAJ M, MANIKANDAN R, et al. Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: A physiochemical analysis [J]. Plant Physiology and Biochemistry, 2017, 110: 59-69. doi: 10.1016/j.plaphy.2016.08.022
[109] MOUSSA H, MERLIN C, DEZANET C, et al. Trace amounts of Cu2+ ions influence ROS production and cytotoxicity of ZnO quantum dots [J]. Journal of Hazardous Materials, 2016, 304: 532-542. doi: 10.1016/j.jhazmat.2015.11.013
[110] CUI X J, WAN B, GUO L H, et al. Insight into the mechanisms of combined toxicity of single-walled carbon nanotubes and nickel ions in macrophages: Role of P2X7 receptor [J]. Environmental Science & Technology, 2016, 50(22): 12473-12483.
[111] WANG L, LIU J H, SONG Z M, et al. Interaction of multi-walled carbon nanotubes and zinc ions enhances cytotoxicity of zinc ions [J]. Science China (Chemistry), 2016, 59(7): 910-917. doi: 10.1007/s11426-016-5591-2
[112] MIKOLAJCZYK A, MALANKOWSKA A, NOWACZYK G, et al. Combined experimental and computational approach to developing efficient photocatalysts based on Au/Pdâ TiO2 nanoparticles [J]. Environmental Science:Nano, 2016, 3(6): 1425-1435. doi: 10.1039/C6EN00232C
[113] MIKOLAJCZYK A, GAJEWICZ A, MULKIEWICZ E, et al. Nano-QSAR modeling for ecosafe design of heterogeneous TiO2-based nano-photocatalysts [J]. Environmental Science:Nano, 2018, 5(5): 1150-1160. doi: 10.1039/C8EN00085A
[114] YUAN B L, WANG P F, SANG L Q, et al. QNAR modeling of cytotoxicity of mixing nano-TiO 2 and heavy metals [J]. Ecotoxicology and Environmental Safety, 2021, 208: 111634. doi: 10.1016/j.ecoenv.2020.111634
[115] GIACOMINI K M, YEE S W, MUSHIRODA T, et al. Genome-wide association studies of drug response and toxicity: An opportunity for genome medicine [J]. Nature Reviews Drug Discovery, 2017, 16(1): 70. doi: 10.1038/nrd.2016.234
[116] WAMUCHO A, UNRINE J M, KIERAN T J, et al. Genomic mutations after multigenerational exposure of Caenorhabditis elegans to pristine and sulfidized silver nanoparticles [J]. Environmental Pollution, 2019, 254: 113078. doi: 10.1016/j.envpol.2019.113078
[117] DESAULNIERS D, XIAO G H, LIAN H, et al. Effects of mixtures of polychlorinated biphenyls, methylmercury, and organochlorine pesticides on hepatic DNA methylation in prepubertal female Sprague-Dawley rats [J]. International Journal of Toxicology, 2009, 28(4): 294-307. doi: 10.1177/1091581809337918
[118] MARTÍNEZ-PACHECO M, HIDALGO-MIRANDA A, ROMERO-CÓRDOBA S, et al. mRNA and miRNA expression patterns associated to pathways linked to metal mixture health effects [J]. Gene, 2014, 533(2): 508-514. doi: 10.1016/j.gene.2013.09.049
[119] MARIA V L, GOMES T, BARREIRA L, et al. Impact of benzo(a)pyrene, Cu and their mixture on the proteomic response of Mytilus galloprovincialis [J]. Aquatic Toxicology, 2013, 144/145: 284-295. doi: 10.1016/j.aquatox.2013.10.009
[120] WU H F, WANG W X. NMR-based metabolomic studies on the toxicological effects of cadmium and copper on green mussels Perna viridis [J]. Aquatic Toxicology, 2010, 100(4): 339-345. doi: 10.1016/j.aquatox.2010.08.005
[121] MARTINS C, DREIJ K, COSTA P M. The state-of-the art of environmental toxicogenomics: Challenges and perspectives of omics approaches directed to toxicant mixtures [J]. International Journal of Environmental Research and Public Health, 2019, 16(23): 4718. doi: 10.3390/ijerph16234718