[1] |
WANG M Y, YIM S H L, DONG G H, et al. Mapping ozone source-receptor relationship and apportioning the health impact in the Pearl River Delta region using adjoint sensitivity analysis [J]. Atmospheric Environment, 2020, 222: 117026. doi: 10.1016/j.atmosenv.2019.117026
|
[2] |
GUAN Y, XIAO Y, WANG F Y, et al. Health impacts attributable to ambient PM2.5 and ozone pollution in major Chinese cities at seasonal-level [J]. Journal of Cleaner Production, 2021, 311: 127510. doi: 10.1016/j.jclepro.2021.127510
|
[3] |
董红召, 王乐恒, 唐伟, 等. 融合时空特征的PCA-PSO-SVM臭氧(O3)预测方法研究 [J]. 中国环境科学, 2021, 41(2): 596-605.
DONG H Z, WANG L H, TANG W, et al. Research on PCA-PSO-SVM ozone prediction considering spatial-temporal features [J]. China Environmental Science, 2021, 41(2): 596-605(in Chinese).
|
[4] |
李子凌. 基于时空数据的臭氧特征分析及其预测算法研究[D]. 北京: 北京交通大学, 2020.
LI Z L. Research on ozone feature analysis and prediction algorithm based on spatio-temporal data[D]. Beijing: Beijing Jiaotong University, 2020(in Chinese).
|
[5] |
肖德林, 邓仕槐, 邓小函, 等. 达州市城区环境空气质量变化趋势及CMAQ模型预报分析 [J]. 中国环境监测, 2021, 37(4): 92-103.
XIAO D L, DENG S H, DENG X H, et al. Analysis of ambient air quality variation trend and CMAQ model forecast system in urban areas of Dazhou City [J]. Environmental Monitoring in China, 2021, 37(4): 92-103(in Chinese).
|
[6] |
RYU Y H, HODZIC A, DESCOMBES G, et al. Toward a better regional ozone forecast over CONUS using rapid data assimilation of clouds and meteorology in WRF-chem [J]. Journal of Geophysical Research:Atmospheres, 2019, 124(23): 13576-13592. doi: 10.1029/2019JD031232
|
[7] |
周广强, 瞿元昊, 余钟奇. 长江三角洲城市臭氧数值预报与释用 [J]. 中国环境科学, 2021, 41(1): 28-36.
ZHOU G Q, QU Y H, YU Z Q. Numerical forecast and improvement of ozone over YRD cities [J]. China Environmental Science, 2021, 41(1): 28-36(in Chinese).
|
[8] |
邹国建. 基于时空特征学习的区域空气污染物扩散趋势预测研究[D]. 上海: 上海师范大学, 2020.
ZOU G J. Study on prediction of regional air pollutant diffusion trend based on spatiotemporal feature learning[D]. Shanghai: Shanghai Normal University, 2020(in Chinese).
|
[9] |
丁愫, 陈报章, 王瑾, 等. 基于决策树的统计预报模型在臭氧浓度时空分布预测中的应用研究 [J]. 环境科学学报, 2018, 38(8): 3229-3242.
DING S, CHEN B Z, WANG J, et al. An applied research of decision-tree based statistical model in forecasting the spatial-temporal distribution of O3 [J]. Acta Scientiae Circumstantiae, 2018, 38(8): 3229-3242(in Chinese).
|
[10] |
梁炜, 李雅箐, 黄喜寿, 等. 基于ARMA-GARCH模型的南宁市O3浓度预测研究 [J]. 广西科学, 2020, 27(1): 91-97.
LIANG W, LI Y Q, HUANG X S, et al. Research on atmospheric ozone concentration prediction based on ARMA-GARCH model in Nanning [J]. Guangxi Sciences, 2020, 27(1): 91-97(in Chinese).
|
[11] |
蔡旺华. 运用机器学习方法预测空气中臭氧浓度 [J]. 中国环境管理, 2018, 10(2): 78-84.
CAI W H. Using machine learning method for predicting the concentration of ozone in the air [J]. Chinese Journal of Environmental Management, 2018, 10(2): 78-84(in Chinese).
|
[12] |
彭岩, 冯婷婷, 王洁. 基于集成学习的O3的质量浓度预测模型 [J]. 山东大学学报(工学版), 2020, 50(4): 1-7.
PENG Y, FENG T T, WANG J. An integrated learning approach for O3 mass concentration prediction model [J]. Journal of Shandong University (Engineering Science), 2020, 50(4): 1-7(in Chinese).
|
[13] |
王舒扬, 姜金荣, 迟学斌, 等. 模式预报数据的深度学习PM2.5浓度预测模型[J]. 数值计算与计算机应用, 2022, 43(2): 142-153.
WANG S Y, JIANG J R, CHI X B, et al. A deep learning model for forecasting PM2.5 combined with numerical model Data[J/OL]. Journal on Numerical Methods and Computer Application, 2022, 43(2): 142-153(in Chinese).
|
[14] |
SUN W, SUN J Y. Daily PM2.5 concentration prediction based on principal component analysis and LSSVM optimized by cuckoo search algorithm [J]. Journal of Environmental Management, 2017, 188: 144-152.
|
[15] |
宋国君, 国潇丹, 杨啸, 等. 沈阳市PM2.5浓度ARIMA-SVM组合预测研究 [J]. 中国环境科学, 2018, 38(11): 4031-4039. doi: 10.3969/j.issn.1000-6923.2018.11.005
SONG G J, GUO X D, YANG X, et al. ARIMA-SVM combination prediction of PM2.5 concentration in Shenyang [J]. China Environmental Science, 2018, 38(11): 4031-4039(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.11.005
|
[16] |
李建新, 刘小生, 刘静, 等. 基于MRMR-HK-SVM模型的PM2.5浓度预测 [J]. 中国环境科学, 2019, 39(6): 2304-2310. doi: 10.3969/j.issn.1000-6923.2019.06.009
LI J X, LIU X S, LIU J, et al. Prediction of PM2.5 concentration based on MRMR-HK-SVM model [J]. China Environmental Science, 2019, 39(6): 2304-2310(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.06.009
|
[17] |
康俊锋, 黄烈星, 张春艳, 等. 多机器学习模型下逐小时PM2.5预测及对比分析 [J]. 中国环境科学, 2020, 40(5): 1895-1905. doi: 10.3969/j.issn.1000-6923.2020.05.005
KANG J F, HUANG L X, ZHANG C Y, et al. Hourly PM2.5 prediction and its comparative analysis under multi-machine learning model [J]. China Environmental Science, 2020, 40(5): 1895-1905(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.05.005
|
[18] |
ZENG Z L, WANG Z M, GUI K, et al. Daily global solar radiation in China estimated from high-density meteorological observations: A random forest model framework [J]. Earth and Space Science, 2020, 7(2): e2019EA001058.
|
[19] |
侯俊雄, 李琦, 朱亚杰, 等. 基于随机森林的PM2.5实时预报系统 [J]. 测绘科学, 2017, 42(1): 1-6.
HOU J X, LI Q, ZHU Y J, et al. Real-time forecasting system of PM2.5 concentration based on spark framework and random forest model [J]. Science of Surveying and Mapping, 2017, 42(1): 1-6(in Chinese).
|
[20] |
HUANG K Y, XIAO Q Y, MENG X, et al. Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China Plain [J]. Environmental Pollution, 2018, 242: 675-683. doi: 10.1016/j.envpol.2018.07.016
|
[21] |
KAPADIA D, JARIWALA N. Prediction of tropospheric ozone using artificial neural network (ANN) and feature selection techniques [J]. Modeling Earth Systems and Environment, 2022, 8(2): 2183-2192. doi: 10.1007/s40808-021-01220-6
|
[22] |
KUMAR N, MIDDEY A, RAO P S. Prediction and examination of seasonal variation of ozone with meteorological parameter through artificial neural network at NEERI, Nagpur, India [J]. Urban Climate, 2017, 20: 148-167. doi: 10.1016/j.uclim.2017.04.003
|
[23] |
SAYEED A, CHOI Y, ESLAMI E, et al. Using a deep convolutional neural network to predict 2017 ozone concentrations, 24 hours in advance [J]. Neural Networks, 2020, 121: 396-408. doi: 10.1016/j.neunet.2019.09.033
|
[24] |
WANG H W, LI X B, WANG D S, et al. Regional prediction of ground-level ozone using a hybrid sequence-to-sequence deep learning approach [J]. Journal of Cleaner Production, 2020, 253: 119841. doi: 10.1016/j.jclepro.2019.119841
|
[25] |
贾鹏程. 基于深度学习的长三角地区臭氧临近预报技术研究[D]. 南京: 南京信息工程大学, 2021.
JIA P C. Deep learning based ozone prediction technique in Yangtze River Delta region[D]. Nanjing: Nanjing University of Information Science & Technology, 2021(in Chinese).
|
[26] |
万显烈, 杨凤林, 王慧卿. 利用人工神经网络对空气中O3浓度进行预测 [J]. 中国环境科学, 2003, 23(1): 110-112. doi: 10.3321/j.issn:1000-6923.2003.01.025
WAN X L, YANG F L, WANG H Q. The approach of artificial neural network applied in ambient ozone forecast [J]. China Environmental Science, 2003, 23(1): 110-112(in Chinese). doi: 10.3321/j.issn:1000-6923.2003.01.025
|
[27] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
|
[28] |
周永生. 基于LSTM神经网络的PM2.5预测[D]. 长沙∶湖南大学, 2018.
ZHOU Y S. PM2.5 Prediction based on LSTM neural network [D]. Changsha: Hunan University, 2018(in Chinese).
|
[29] |
AL-JANABI S, MOHAMMAD M, AL-SULTAN A. A new method for prediction of air pollution based on intelligent computation [J]. Soft Computing, 2020, 24(1): 661-680. doi: 10.1007/s00500-019-04495-1
|
[30] |
FREEMAN B S, TAYLOR G, GHARABAGHI B, et al. Forecasting air quality time series using deep learning [J]. Journal of the Air & Waste Management Association, 2018, 68(8): 866-886.
|
[31] |
JIA P C, CAO N W, YANG S B. Real-time hourly ozone prediction system for Yangtze River Delta area using attention based on a sequence to sequence model [J]. Atmospheric Environment, 2021, 244: 117917. doi: 10.1016/j.atmosenv.2020.117917
|
[32] |
PAK U, KIM C, RYU U, et al. A hybrid model based on convolutional neural networks and long short-term memory for ozone concentration prediction [J]. Air Quality, Atmosphere & Health, 2018, 11(8): 883-895.
|
[33] |
方韬. 基于神经网络的近地面臭氧估算和预测研究[D]. 上海: 上海师范大学, 2020.
FANG T. Study on estimation and prediction of near-surface ozone based on neural network[D]. Shanghai: Shanghai Normal University, 2020(in Chinese).
|
[34] |
ZHOU J, CUI G Q, HU S D, et al. Graph neural networks: A review of methods and applications [J]. AI Open, 2020, 1: 57-81. doi: 10.1016/j.aiopen.2021.01.001
|
[35] |
RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets [J]. Science, 2011, 334(6062): 1518-1524. doi: 10.1126/science.1205438
|
[36] |
高婵娟, 赵啟超, 丁若男, 等. 2018年吉林市大气污染物浓度变化及其与气象因素的相关性分析 [J]. 环境工程, 2021, 39(5): 71-79.
GAO C J, ZHAO Q C, DING R N, et al. Variations of atmospheric pollutants concentrations and their correlation with meteorological factor in Jilin City in 2018 [J]. Environmental Engineering, 2021, 39(5): 71-79(in Chinese).
|
[37] |
ZHENG Y, YI X W, LI M, et al. Forecasting fine-grained air quality based on big data[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney NSW Australia. New York, NY, USA: ACM, 2015: 2267-2276.
|