[1] |
姜磊, 周海峰, 赖志柱, 等. 中国城市PM2.5时空动态变化特征分析: 2015—2017年[J]. 环境科学学报, 2018, 38(10): 3816 − 3825.
|
[2] |
GENIAUX G, MARTINETTI D. A new method for dealing simultaneously with spatial autocorrelation and spatial heterogeneity in regression models[J]. Regional Science and Urban Economics, 2018, 72: 74 − 85. doi: 10.1016/j.regsciurbeco.2017.04.001
|
[3] |
CHEN J, ZHOU C S, WANG S J. Identifying the socioeconomic determinants of population exposure to particulate matter (PM2.5) in China using geographically weighted regression modeling[J]. Environmental Pollution, 2018, 241: 494 − 503. doi: 10.1016/j.envpol.2018.05.083
|
[4] |
ROMANO C L, TRAÙ F. The nature of industrial development and the speed of structural change[J]. Structural Change and Economic Dynamics, 2017, 42: 26 − 37. doi: 10.1016/j.strueco.2017.05.003
|
[5] |
沈冰, 李鑫. 金融发展、产业结构升级与能源效率提升[J]. 经济问题探索, 2020(12): 131 − 138.
|
[6] |
王敏, 李亚非, 马树才. 智慧城市建设是否促进了产业结构升级[J]. 财经科学, 2020(12): 56 − 71. doi: 10.3969/j.issn.1000-8306.2020.12.006
|
[7] |
CHENG Z, LI L, LIU J. Industrial structure, technical progress and carbon intensity in China’s provinces[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2935 − 2946. doi: 10.1016/j.rser.2017.06.103
|
[8] |
徐娜娜. 基于DEA-Malmquist指数开放型经济下河南省三次产业全要素生产率测算[J]. 数学的实践与认识, 2020, 50(18): 303 − 309.
|
[9] |
梁睿, 高明, 吴雪萍. 环境规制与大气污染减排关系的进一步检验——基于经济增长的门槛效应分析[J]. 生态经济, 2020, 36(9): 182 − 187.
|
[10] |
郭一鸣, 蔺雪芹, 边宇. 中国城市群空气质量时空演化特征及其影响因素[J]. 生态经济, 2019, 35(11): 167 − 175.
|
[11] |
张晓春, 丘建栋, 屈新明, 等. 深圳市交通排放污染物浓度特征与影响因素[J]. 深圳大学学报(理工版), 2020, 37(2): 178 − 186.
|
[12] |
TIE X, LONG X, DAI W. Surface atmospheric PM2.5 optical, satellite distribution depth and of related effects on crop production in China[J]. Air Pollution in Eastern Asia, 2017, 16: 479.
|
[13] |
战杨志豪, 谢旻, 罗干, 等. 2018年冬季南京重霾污染特征及气象因素分析[J]. 环境科学学报, 2020, 40(11): 4038 − 4047. doi: 10.13671/j.hjkxxb.2020.0210
|
[14] |
JIN J Q, DU Y, XU L J. Using Bayesian spatio-temporal model to determine the socio-economic and meteorological factors influencing ambient PM2.5 levels in 109 Chinese cities[J]. Environmental Pollution, 2019, 254: 113023. doi: 10.1016/j.envpol.2019.113023
|
[15] |
ARELLANO M, BOND S. Some tests of specification for panel data: Monte carlo evidence and an application to employment equations[J]. Review of Economic Studies, 1991, 58: 277 − 297. doi: 10.2307/2297968
|
[16] |
BLUNDELL R, BOND S. Initial conditions and moment restrictions in dynamic panel data models[J]. Journal of Econometrics, 1998, 87: 115 − 143. doi: 10.1016/S0304-4076(98)00009-8
|
[17] |
KUKENOVA M, MONTEIRO J. Spatial Dynamic Panel Model and System GMM: A Monte Carlo investigation. 2009 [R]. IRENE Working Papers 09-01, Irene Institute of Economic Research.
|
[18] |
ELHORST J P. Specification and estimation of spatial panel data models[J]. International Regional Science Review, 2003, 26: 244 − 268. doi: 10.1177/0160017603253791
|