[1] SAAD M A, KAMIL M, ABDURAHMAN N H, et al. An overview of recent advances in state-of-the-art techniques in the demulsification of crude oil emulsions[J]. Processes, 2019, 7(7): 470. doi: 10.3390/pr7070470
[2] GOODARZI F, ZENDEHBOUDI S. A comprehensive review on emulsions and emulsion stability in chemical and energy industries[J]. Canadian Journal of Chemical Engineering, 2019, 97(1): 281 − 309. doi: 10.1002/cjce.23336
[3] CHEN G, TAO D. An experimental study of stability of oil–water emulsion[J]. Fuel Processing Technology, 2005, 86(5): 499 − 508. doi: 10.1016/j.fuproc.2004.03.010
[4] VERRUTO V J, LE R K, KILPATRICK P K. Adsorption and molecular rearrangement of amphoteric species at oil−water interfaces[J]. The Journal of Physical Chemistry B, 2009, 113(42): 13788 − 13799. doi: 10.1021/jp902923j
[5] PERINI N, PRADO A R, SAD C M S, et al. Electrochemical impedance spectroscopy for in situ petroleum analysis and water-in-oil emulsion characterization[J]. Fuel, 2012, 91(1): 224 − 228. doi: 10.1016/j.fuel.2011.06.057
[6] 苑光宇. 化学驱乳化机理及乳化驱油新技术研究进展[J]. 日用化学工业, 2019, 49(1): 44 − 50. doi: 10.3969/j.issn.1001-1803.2019.01.010
[7] DRELICH A, GOMEZ F, CLAUSSE D, et al. Evolution of water-in-oil emulsions stabilized with solid particles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2010, 365(1-3): 171 − 177. doi: 10.1016/j.colsurfa.2010.01.042
[8] ALMEIDA M L, CHARIN R M, NELE M, et al. Stability studies of high-stable water-in-oil model emulsions[J]. Journal of Dispersion Science and Technology, 2016, 38(1): 82 − 88.
[9] 朱洲, 康万利, 吴瑞坤, 等. 高盐条件下甜菜碱两亲聚合物乳状液体系的稳定性[J]. 石油化工高等学校学报, 2017, 30(06): 32 − 36. doi: 10.3969/j.issn.1006-396X.2017.06.007
[10] 赵红运, 孙灵辉, 刘卫东, 等. 化学剂浓度对大庆油田乳状液稳定性的影响[J]. 应用化工, 2019, 48(9): 2061 − 2064. doi: 10.3969/j.issn.1671-3206.2019.09.010
[11] WU H, CHEN X, TAN R, et al. Controllable regulation of emulsion stability by a pH-responsive zwitterionic/anionic surfactant system[J]. Fuel, 2022, 312: 122921. doi: 10.1016/j.fuel.2021.122921
[12] ASKE N, KALLEVIK H, SJOBLOM J. Water-in-crude oil emulsion stability studied by critical electric field measurements. Correlation to physico-chemical parameters and near-infrared spectroscopy[J]. Journal of Petroleum Science and Engineering, 2002, 36(1-2): 1 − 17. doi: 10.1016/S0920-4105(02)00247-4
[13] WANG X Y, ALVARADO V. Direct current electrorheological stability determination of water-in-crude oil emulsions[J]. Journal of Physical Chemistry B, 2009, 113(42): 13811 − 13816. doi: 10.1021/jp9030078
[14] BEETGE J H. Emulsion stability studies based on the critical electric field (CEF) technique[J]. Energy & Fuels, 2012, 26(10): 6282 − 6291.
[15] BRASIL T A, WATANABE E H, ASSENHEIMER T, et al. Microscope analysis and evaluation of the destabilization process of water-in-oil emulsions under application of electric field[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(3): 8738 − 81.
[16] 张维, 李明远, 林梅钦, 等. 电导率与O/W乳状液的稳定性[J]. 石油学报(石油加工), 2008(5): 592 − 597.
[17] 倪良, 胡莹海, 吴春笃. 电导法研究环己烷/水/CTAB乳状液的稳定性[J]. 江苏大学学报(自然科学版), 2005(6): 550 − 552.
[18] 林炳丞. 高含油污泥的定向催化热解研究[D]. 杭州: 浙江大学, 2020.
[19] HOSSEINI A, ZARE E, AYATOLLAHI S, et al. Electrokinetic behavior of asphaltene particles[J]. Fuel, 2016, 178: 234 − 242. doi: 10.1016/j.fuel.2016.03.051
[20] LIU J, ZHANG Y, PENG K, et al. A review of the interfacial stability mechanism of aging oily sludge: Heavy components, inorganic particles, and their synergism[J]. Journal of Hazardous Materials, 2021, 415: 125624. doi: 10.1016/j.jhazmat.2021.125624
[21] MCLEAN J D, KILPATRICK P K. Effects of asphaltene aggregation in model heptane–toluene mixtures on stability of water-in-oil emulsions[J]. Journal of Colloid and Interface Science, 1997, 196(1): 23 − 34. doi: 10.1006/jcis.1997.5177
[22] SPIECKER P M, GAWRYS K L, KILPATRICK P K. Aggregation and solubility behavior of asphaltenes and their subfractions[J]. Journal of Colloid and Interface Science, 2003, 267(1): 178 − 193. doi: 10.1016/S0021-9797(03)00641-6
[23] ZAKI N, SCHORIING P C, RAHIMIAN I. Effect of asphaltene and resins on the stability of water-in-waxy oil emulsions[J]. Petroleum Science and Technology, 2000, 18(7-8): 945 − 963. doi: 10.1080/10916460008949884
[24] SPIECKER P M, GAWRYS K L, TRAIL C B, et al. Effects of petroleum resins on asphaltene aggregation and water-in-oil emulsion formation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 220(1-3): 9 − 27.
[25] WANG H, XU H, JIA W, et al. Revealing the intermolecular interactions of asphaltene dimers by quantum chemical calculations[J]. Energy & Fuels, 2017, 31(3): 2488 − 2495.
[26] ALBOUDWAREJ H, POLE D, SVRCEK W Y, et al. Adsorption of asphaltenes on metals[J]. Industrial & Engineering Chemistry Research, 2005, 44(15): 5585 − 5592.
[27] EKHOLM P, BLOMBERG E, CLAESSON P, et al. A quartz crystal microbalance study of the adsorption of asphaltenes and resins onto a hydrophilic surface[J]. Journal of Colloid and Interface Science, 2002, 247(2): 342 − 350. doi: 10.1006/jcis.2002.8122
[28] YANG X, VERRUTO V J, KILPATRICK P K. Dynamic asphaltene−resin exchange at the oil/water interface:  Time-dependent W/O emulsion stability for asphaltene/resin model oils[J]. Energy & Fuels, 2007, 21(3): 1343 − 1349.
[29] HEMMATI-SARAPARDEH A, DABIR B, AHMADI M, et al. Toward mechanistic understanding of asphaltene aggregation behavior in toluene: The roles of asphaltene structure, aging time, temperature, and ultrasonic radiation[J]. Journal of Molecular Liquids, 2018, 264: 410 − 424. doi: 10.1016/j.molliq.2018.04.061
[30] SOULGANI B S, REISI F, NOROUZI F. Investigation into mechanisms and kinetics of asphaltene aggregation in toluene/n-hexane mixtures[J]. Petroleum Science, 2019, 17(2): 457 − 466.
[31] 刘广豪, 徐心茹, 袁佩青, 等. 胶质对沥青质稳定性的影响[J]. 石油炼制与化工, 2020, 51(10): 70 − 76. doi: 10.3969/j.issn.1005-2399.2020.10.018
[32] ZOJAJI I, ESFANDIARIAN A, TAHERI-SHAKIB J. Toward molecular characterization of asphaltene from different origins under different conditions by means of FT-IR spectroscopy[J]. Advances in Colloid and Interface Science, 2021, 289: 102314. doi: 10.1016/j.cis.2020.102314
[33] 薛慧勇. 沥青质和胶质对含蜡油胶凝特性的影响及其机理研究[D]. 北京: 中国石油大学(北京), 2020.
[34] KIRIMLI H E. Determining the interaction and characterization of asphaltene in alkylbenzene solvents using nuclear-electron double resonance[J]. Journal of Dispersion Science and Technology, 2016, 38(4): 498 − 505.
[35] 李明远, 俎永平. 原油乳状液稳定性研究(蜡与原油乳状液稳定性)[J]. 油田地面工程, 1997(2): 1 − 5.
[36] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 原油蜡含量的测定: GB/T 26982—2011[S]. 北京: 中国标准出版社, 2011.
[37] 代佳林. 胶质和沥青质对含蜡模拟油胶凝特性影响的研究[D]. 北京: 中国石油大学(北京), 2019.
[38] ZHU H, LI C, FAN Y, et al. A novel heterogeneous wax deposit structure triggered by polyethylene vinyl acetate (EVA) wax inhibitors[J]. Journal of Dispersion Science and Technology, 2019, 41(13): 2002 − 2013.
[39] GAO X D, HUANG Q Y, ZHANG X, et al. Study on wax precipitation characteristics of wax deposit in pipes[J]. Canadian Journal of Chemical Engineering, 2020, 98(5): 1202 − 1210. doi: 10.1002/cjce.23690
[40] SZUMAŁA P, LUTY N. Effect of different crystalline structures on W/O and O/W/O wax emulsion stability[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 499: 131 − 140.
[41] PARK B G, HA C S. The properties of oil–wax gels with changing lattice structure of wax crystal[J]. Molecular Crystals and Liquid Crystals, 2012, 569(1): 143 − 50. doi: 10.1080/15421406.2012.697420
[42] GUTHRIE S E, MAZZANTI G, STEER T N, et al. Anin situmethod for observing wax crystallization under pipe flow[J]. Review of Scientific Instruments, 2004, 75(4): 873 − 837. doi: 10.1063/1.1666991
[43] 宋先雨, 方申文, 陶俊, 等. 环烷酸对原油乳状液稳定性影响的研究进展[J]. 精细石油化工, 2015, 32(1): 47 − 52. doi: 10.3969/j.issn.1003-9384.2015.01.012
[44] 兰建义, 杨敬一, 徐心茹. 含硫含酸原油加工中含油污水的形成与破乳研究[J]. 环境科学与技术, 2010, 33(12): 120 − 123.
[45] BRANDAL O, SJOBLOM J. Interfacial behavior of naphthenic acids and multivalent cations in systems with oil and water. II: Formation and stability of metal naphthenate films at oil‐water interfaces[J]. Journal of Dispersion Science and Technology, 2005, 26(1): 53 − 58. doi: 10.1081/DIS-200040145
[46] ARLA D, SINQUIN A, PALERMO T, et al. Influence of pH and water content on the type and stability of acidic crude oil emulsions[J]. Energy & Fuels, 2007, 21(3): 1337 − 1342.
[47] KILPATRICK P K. Water-in-crude oil emulsion stabilization: Review and unanswered questions[J]. Energy & Fuels, 2012, 26(7): 4017 − 4026.
[48] HORVATH-SZABO G, CZARNECKI J, MASLIYAH J. Liquid crystals in aqueous solutions of sodium naphthenates[J]. Journal of Colloid and Interface Science, 2001, 236(2): 233 − 241. doi: 10.1006/jcis.2000.7412
[49] HORVATH-SZABO G, CZARNECKI J, MASLIYAH J H. Sandwich structures at oil-water interfaces under alkaline conditions[J]. Journal of Colloid and Interface Science, 2002, 253(2): 427 − 434. doi: 10.1006/jcis.2002.8524
[50] 张振, 胡芳芳, 张玉贞. 渤海原油环烷酸分布与组成结构[J]. 中国石油大学学报(自然科学版), 2010, 34(5): 174 − 178.
[51] 杨敬一, 何萧, 蔡海军, 等. 风城稠油中石油酸组成结构分析[J]. 石油炼制与化工, 2017, 48(2): 106 − 112. doi: 10.3969/j.issn.1005-2399.2017.02.020
[52] BRUNSWICK P, SHANG D Y, VAN AGGELEN G, et al. Trace analysis of total naphthenic acids in aqueous environmental matrices by liquid chromatography/mass spectrometry-quadrupole time of flight mass spectrometry direct injection[J]. Journal of Chromatography A, 2015, 1405: 49 − 71. doi: 10.1016/j.chroma.2015.05.048
[53] ROWLAND S J, WEST C E, SCARLETT A G, et al. Monocyclic and monoaromatic naphthenic acids: synthesis and characterisation[J]. Environmental Chemistry Letters, 2011, 9(4): 525 − 533. doi: 10.1007/s10311-011-0314-6
[54] ROWLAND S J, SCARLETT A G, JONES D, et al. Diamonds in the rough: Identification of individual naphthenic acids in oil sands process water[J]. Environmental Science & Technology, 2011, 45(7): 3154 − 3159.
[55] HINDLE R, NOESTHEDEN M, PERU K, et al. Quantitative analysis of naphthenic acids in water by liquid chromatography-accurate mass time-of-flight mass spectrometry[J]. Journal of Chromatography A, 2013, 1286: 166 − 174. doi: 10.1016/j.chroma.2013.02.082
[56] 刘靖新, 曹青, 修远, 等. 克拉玛依九区原油中石油酸分子的表征[J]. 石油化工, 2018, 47(7): 734 − 740. doi: 10.3969/j.issn.1000-8144.2018.07.015
[57] 孙娜娜, 敬加强, 丁晔, 等. 无机盐阴阳离子对稠油水包油型乳状液稳定性的影响[J]. 化工进展, 2015, 34(8): 3118 − 3123. doi: 10.16085/j.issn.1000-6613.2015.08.034
[58] 王彦玲, 任金恒, 金家锋, 等. 无机盐对石油磺酸钠乳状液的性能和微观状态的影响[J]. 精细石油化工, 2017, 34(4): 31 − 35. doi: 10.3969/j.issn.1003-9384.2017.04.008
[59] 任金恒, 王彦玲, 王坤, 等. 无机盐对O/W乳状液可逆转相和稳定性的影响[J]. 应用化工, 2017, 46(5): 809 − 819. doi: 10.3969/j.issn.1671-3206.2017.05.001
[60] SUN Z, PU W, ZHAO R, et al. Study on the mechanism of W/O emulsion flooding to enhance oil recovery for heavy oil reservoir[J]. Journal of Petroleum Science and Engineering, 2022, 209: 109899. doi: 10.1016/j.petrol.2021.109899
[61] AKTER F, SAITO S, TASAKI-HANDA Y, et al. Partition/ion-exclusion chromatographic ion stacking for the analysis of trace anions in water and salt samples by ion chromatography[J]. Analytical Sciences, 2018, 34(3): 369 − 373. doi: 10.2116/analsci.34.369
[62] 施超欧, 姚宝龙, 胡咪, 等. 离子转换色谱-紫外检测法测定啤酒中的无机阴离子和有机酸[J]. 色谱, 2016, 34(10): 951 − 955.
[63] GRIFFITH C, DAIGLE H. A comparison of the static and dynamic stability of Pickering emulsions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 586: 124256. doi: 10.1016/j.colsurfa.2019.124256
[64] SAUKOWSKI D M, YARRANTON H W. Oilfield solids and water-in-oil emulsion stability[J]. Journal of Colloid and Interface Science, 2005, 285(2): 821 − 833. doi: 10.1016/j.jcis.2004.12.029
[65] MAAREF S, KANTZAS A, BRYANT S L. The effect of silanization assisted nanoparticle hydrophobicity on emulsion stability through droplet size distribution analysis[J]. Chemical Engineering Science, 2019, 201: 175 − 190. doi: 10.1016/j.ces.2019.02.034
[66] KRUGLYAKOV P M, NUSHTAYEVA A V. Investigation of the influence of capillary pressure on stability of a thin layer emulsion stabilized by solid particles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2005, 263(1-3): 330 − 335. doi: 10.1016/j.colsurfa.2005.04.004
[67] 罗许颖, 未碧贵. 特殊润湿性表面的油水分离研究进展[J]. 应用化工, 2021, 50(3): 765 − 768. doi: 10.3969/j.issn.1671-3206.2021.03.042
[68] ALVAREZ J O, SCHECHTER D S. 非常规油气开发中润湿性反转技术的应用[J]. 石油勘探与开发, 2016, 43(5): 764 − 771.
[69] SU S, JIANG Z, SHAN X, et al. The wettability of shale by NMR measurements and its controlling factors[J]. Journal of Petroleum Science and Engineering, 2018, 169: 309 − 316. doi: 10.1016/j.petrol.2018.05.067
[70] ALVAREZ J O, SCHECHTER D S. Application of wettability alteration in the exploitation of unconventional liquid resources[J]. Petroleum Exploration and Development, 2016, 43(5): 832 − 840. doi: 10.1016/S1876-3804(16)30099-4
[71] 倪寿亮. 粒度分析方法及应用[J]. 广东化工, 2011, 38(2): 223 − 227. doi: 10.3969/j.issn.1007-1865.2011.02.107
[72] 卢毓华, 王海舟, 李冬玲, 等. 小角X射线散射法对GH4096高温合金中γ′相的尺寸分布分析[J]. 冶金分析, 2021, 41(9): 1 − 10. doi: 10.13228/j.boyuan.issn1000-7571.011369
[73] 周晓蕾. 激光衍射法测定重晶石粉粒度的影响因素研究[J]. 石油化工应用, 2021, 40(5): 112 − 115. doi: 10.3969/j.issn.1673-5285.2021.05.026
[74] TACKIE-OTOO B N, AYOUB MOHAMMED M A, YEKEEN N, et al. Alternative chemical agents for alkalis, surfactants and polymers for enhanced oil recovery: Research trend and prospects[J]. Journal of Petroleum Science and Engineering, 2020, 187: 106828. doi: 10.1016/j.petrol.2019.106828
[75] YU Q, JIANG H, SONG Y, et al. Chemical flooding for enhanced recovery[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2012, 34(5): 478 − 483. doi: 10.1080/15567036.2011.592917
[76] 张和悦, 高清河, 王鉴, 等. 驱油剂对弱碱三元复合驱乳状液稳定性的影响[J]. 科学技术与工程, 2021, 21(36): 15440 − 15445. doi: 10.3969/j.issn.1671-1815.2021.36.019
[77] LI M, XU M, LIN M, et al. The effect of HPAM on crude oil/water interfacial properties and the stability of crude oil emulsions[J]. Journal of Dispersion Science and Technology, 2007, 28(1): 189 − 192. doi: 10.1080/01932690600992829
[78] KANG W, XU B, WANG Y, et al. Stability mechanism of W/O crude oil emulsion stabilized by polymer and surfactant[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2011, 384(1-3): 555 − 560.
[79] 李艳红, 王升宝, 常丽萍. 表(界)面张力测定方法的研究进展[J]. 日用化学工业, 2007(2): 102 − 106. doi: 10.3969/j.issn.1001-1803.2007.02.009
[80] HOORFAR M, NEUMANN A W. Axisymmetric drop shape analysis (ADSA) for the determination of surface tension and contact angle[J]. The Journal of Adhesion, 2010, 80(8): 727 − 743.
[81] TEN HAVE E S, VDOVIN G. Novel method for measuring surface tension[J]. Sensors and Actuators A:Physical, 2012, 173(1): 90 − 96. doi: 10.1016/j.sna.2011.10.021
[82] 陈双. 不同化学驱油剂与稠油组分间的相互作用和界面流变性质[D]. 北京: 中国石油大学(北京), 2020.
[83] STACHURSKI J, MICHAŁEK M. The effect of the ζ potential on the stability of a non-polar oil-in-water emulsion[J]. Journal of Colloid and Interface Science, 1996, 184(2): 433 − 436. doi: 10.1006/jcis.1996.0637
[84] PINTO I, BUSS A. ζ potential as a measure of asphalt emulsion stability[J]. Energy & Fuels, 2020, 34(2): 2143 − 2151.
[85] 秦福元. 基于相位分析光散射的Zeta电位测量研究[D]. 淄博: 山东理工大学, 2018.
[86] OPEDAL N V D T, SØRLAND G, SJÖBLOM J. Emulsion stability studied by nuclear magnetic resonance (NMR)[J]. Energy & Fuels, 2010, 24(6): 3628 − 3633.
[87] BARRABINO A, KELEŞOĞLU S, EFTEKHARDADKHAH M, et al. Enhanced sedimentation and coalescence of petroleum crude oil emulsions by the new generation of environmentally friendly yellow chemicals[J]. Journal of Dispersion Science and Technology, 2017, 38(12): 1677 − 1686. doi: 10.1080/01932691.2015.1004410
[88] HEMMINGSEN P V, SILSET A, HANNISDAL A, et al. Emulsions of heavy crude oils. I: Influence of viscosity, temperature, and dilution[J]. Journal of Dispersion Science and Technology, 2005, 26(5): 615 − 627. doi: 10.1081/DIS-200057671
[89] HANNISDAL A, HEMMINGSEN P V, SILSET A, et al. Stability of water/crude oil systems correlated to the physicochemical properties of the oil phase[J]. Journal of Dispersion Science and Technology, 2007, 28(4): 639 − 652. doi: 10.1080/01932690701283417
[90] JIANG T M, HIRASAKI G, MILLER C, et al. Diluted bitumen water-in-oil emulsion stability and characterization by nuclear magnetic resonance (NMR) measurements[J]. Energy & Fuels, 2007, 21(3): 1325 − 1336.
[91] JIANG T, HIRASAKI G J, MILLER C A, et al. Using silicate and pH control for removal of the rag layer containing clay solids formed during demulsification[J]. Energy & Fuels, 2008, 22(6): 4158 − 4164.