[1] |
JANKOVIĆ N Z, PLATA D L. Engineered nanomaterials in the context of global element cycles [J]. Environmental Science:Nano, 2019, 6(9): 2697-2711. doi: 10.1039/C9EN00322C
|
[2] |
YE N, WANG Z, WANG S, et al. Toxicity of mixtures of zinc oxide and graphene oxide nanoparticles to aquatic organisms of different trophic level: Particles outperform dissolved ions [J]. Nanotoxicology, 2018, 12(5): 423-438. doi: 10.1080/17435390.2018.1458342
|
[3] |
XIN X Y, HUANG G H, ZHANG B Y, et al. Trophic transfer potential of nTiO2, nZnO, and triclosan in an algae-algae eating fish food chain [J]. Aquatic Toxicology, 2021, 235: 105824. doi: 10.1016/j.aquatox.2021.105824
|
[4] |
KHAN R, INAM M A, KHAN S, et al. Interaction between persistent organic pollutants and ZnO NPs in synthetic and natural waters [J]. Nanomaterials (Basel, Switzerland), 2019, 9(3): 472. doi: 10.3390/nano9030472
|
[5] |
ZHU K Y, ZHANG L, MU L, et al. Antagonistic effect of zinc oxide nanoparticle and surfactant on anaerobic digestion: Focusing on the microbial community changes and interactive mechanism [J]. Bioresource Technology, 2020, 297: 122382. doi: 10.1016/j.biortech.2019.122382
|
[6] |
HERNÁNDEZ-MORENO D, VALDEHITA A, CONDE E, et al. Acute toxic effects caused by the co-exposure of nanoparticles of ZnO and Cu in rainbow trout [J]. Science of the Total Environment, 2019, 687: 24-33. doi: 10.1016/j.scitotenv.2019.06.084
|
[7] |
ZHAO L, JI Y, SUN P Z, et al. Effects of individual and complex ciprofloxacin, fullerene C60, and ZnO nanoparticles on sludge digestion: Methane production, metabolism, and microbial community [J]. Bioresource Technology, 2018, 267: 46-53. doi: 10.1016/j.biortech.2018.07.024
|
[8] |
KHAN A U H, LIU Y J, NAIDU R, et al. Interactions between zinc oxide nanoparticles and hexabromocyclododecane in simulated waters [J]. Environmental Technology & Innovation, 2021, 24: 102078.
|
[9] |
LI M, PEI J C, TANG X M, et al. Effects of surfactants on the combined toxicity of TiO2 nanoparticles and cadmium to Escherichia coli [J]. Journal of Environmental Sciences, 2018, 74: 126-133. doi: 10.1016/j.jes.2018.02.016
|
[10] |
LIU N, WANG Y P, GE F, et al. Antagonistic effect of nano-ZnO and cetyltrimethyl ammonium chloride on the growth of Chlorella vulgaris: Dissolution and accumulation of nano-ZnO [J]. Chemosphere, 2018, 196: 566-574. doi: 10.1016/j.chemosphere.2017.12.184
|
[11] |
OECD. Current Approaches in the Statistical Analysis of Ecotoxicity Data[M]. OECD, 2006.
|
[12] |
ROSENBERG M. Basic and applied aspects of microbial adhesion at the hydrocarbon: Water interface [J]. Critical Reviews in Microbiology, 1991, 18(2): 159-173. doi: 10.3109/10408419109113512
|
[13] |
王懿鹏. 纳米ZnO/CTAC复合污染体系对小球藻生长的影响[D]. 湘潭: 湘潭大学, 2016.WANG Y P. The joint effect of binary mixtures of nano-ZnO and cetyltrimethyl ammonium chloride on the growth of Chlorella vulgaris[D]. Xiangtan: Xiangtan University, 2016(in Chinese).
|
[14] |
LI X K, YONEDA M, SHIMADA Y, et al. Effect of surfactants on the aggregation and sedimentation of zinc oxide nanomaterial in natural water matrices [J]. Science of the Total Environment, 2017, 581/582: 649-656. doi: 10.1016/j.scitotenv.2016.12.175
|
[15] |
ABD EL-LATEEF H M, KHALAF ALI M M, SALEH M M. Adsorption and removal of cationic and anionic surfactants using zero-valent iron nanoparticles [J]. Journal of Molecular Liquids, 2018, 268: 497-505. doi: 10.1016/j.molliq.2018.07.093
|
[16] |
JIA H, WU H Y, WU T, et al. Investigation on the adsorption mechanism and model of didodecyldimethylammonium bromide on ZnO nanoparticles at the oil/water interface [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 585: 124159. doi: 10.1016/j.colsurfa.2019.124159
|
[17] |
VERA-LÓPEZ S, MARTÍNEZ P, SAN ANDRÉS M P, et al. Study of graphene dispersions in sodium dodecylsulfate by steady-state fluorescence of Pyrene [J]. Journal of Colloid and Interface Science, 2018, 514: 415-424. doi: 10.1016/j.jcis.2017.12.052
|
[18] |
LI R M, WANG Z R, GU X F, et al. Study on the assembly structure variation of cetyltrimethylammonium bromide on the surface of gold nanoparticles [J]. ACS Omega, 2020, 5(10): 4943-4952. doi: 10.1021/acsomega.9b03823
|
[19] |
许银, 葛飞, 陶能国, 等. 十六烷基三甲基氯化铵抑制小球藻生长的效应及作用机制 [J]. 环境科学, 2009, 30(6): 1767-1772. doi: 10.3321/j.issn:0250-3301.2009.06.036
XU Y, GE F, TAO N G, et al. Growth inhibition and mechanism of cetyltrimethyl ammonium chloride on Chlorella vulgaris [J]. Environmental Science, 2009, 30(6): 1767-1772(in Chinese). doi: 10.3321/j.issn:0250-3301.2009.06.036
|
[20] |
JIA H, HUANG W J, HAN Y G, et al. Systematic investigation on the interaction between SiO2 nanoparticles with different surface affinity and various surfactants [J]. Journal of Molecular Liquids, 2020, 304: 112777. doi: 10.1016/j.molliq.2020.112777
|
[21] |
AHAMED A, LIANG L L, LEE M Y, et al. Too small to matter?Physicochemical transformation and toxicity of engineered nTiO2, nSiO2, nZnO, carbon nanotubes, and nAg [J]. Journal of Hazardous Materials, 2021, 404: 124107. doi: 10.1016/j.jhazmat.2020.124107
|
[22] |
ADITYA A, CHATTOPADHYAY S, GUPTA N, et al. ZnO nanoparticles modified with an amphipathic peptide show improved photoprotection in skin [J]. ACS Applied Materials & Interfaces, 2019, 11(1): 56-72.
|
[23] |
YIN J Y, DONG Z M, LIU Y Y, et al. Toxicity of reduced graphene oxide modified by metals in microalgae: Effect of the surface properties of algal cells and nanomaterials [J]. Carbon, 2020, 169: 182-192. doi: 10.1016/j.carbon.2020.07.057
|
[24] |
LIU J B, XU L M, ZHU F F, et al. Effects of surfactants on the remediation of petroleum contaminated soil and surface hydrophobicity of petroleum hydrocarbon degrading flora [J]. Environmental Engineering Research, 2021, 26(5): 200384.
|
[25] |
MASAKORALA K, TURNER A, BROWN M T. Toxicity of synthetic surfactants to the marine macroalga, Ulva lactuca [J]. Water, Air, & Soil Pollution, 2011, 218(1/2/3/4): 283-291.
|
[26] |
WAN J P, WANG R T, WANG R L, et al. Comparative physiological and transcriptomic analyses reveal the toxic effects of ZnO nanoparticles on plant growth [J]. Environmental Science & Technology, 2019, 53(8): 4235-4244.
|
[27] |
GODOY-GALLARDO M, ECKHARD U, DELGADO L M, et al. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications [J]. Bioactive Materials, 2021, 6(12): 4470-4490. doi: 10.1016/j.bioactmat.2021.04.033
|
[28] |
ZHAO J, ZHANG B W, ZUO J E. Response of anammox granules to ZnO nanoparticles at ambient temperature [J]. Environmental Technology & Innovation, 2019, 13: 146-152.
|
[29] |
WANG D L, LIN Z F, YAO Z F, et al. Surfactants present complex joint effects on the toxicities of metal oxide nanoparticles [J]. Chemosphere, 2014, 108: 70-75. doi: 10.1016/j.chemosphere.2014.03.010
|