[1] 国家环境保护部办公厅. 湖泊河流环保疏浚工程技术指南(征求意见稿)[EB/OL]. (2014-06-12)[2021-03-20] . http://www.mee.gov.cn/gkml/hbb/bgth/201406/W020140612431125211013.pdf 2014.
[2] 陈豪, 左其亭, 窦明. 河流底泥重金属污染研究进展[J]. 人民黄河, 2014, 36(5): 71 − 75.
[3] CALMANO W, HONG J, FORSTNER U. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redoxpotential[J]. Water Science and Technology, 1993, 28(8-9): 223 − 235. doi: 10.2166/wst.1993.0622
[4] 毛志刚, 谷孝鸿, 陆小明, 等. 太湖东部不同类型湖区疏浚后沉积物重金属污染及潜在生态风险评价[J]. 环境科学, 2014, 35(1): 186 − 193.
[5] 张元晶, 高彦静, 张杰. 燃料乙醇全球研究态势可视化分析[J]. 化工新型材料, 2020, 48(10): 253 − 258.
[6] SINGH S P, TACK F M, VERLOO M G. Heavy metal fractionation and extractability in dredged sediment derived surface soils[J]. Water Air and Soil Pollution, 1998, 102(3-4): 313 − 328.
[7] MEERS E, VANDECASTEELE B, RUTTENS A, et al. Potential of five willow species (Salix spp. ) for phytoextraction of heavy metals[J]. Environmental and Experimental Botany, 2007, 60(1): 57 − 68. doi: 10.1016/j.envexpbot.2006.06.008
[8] VARVAEKE P, LUYSSAERT S, MARTENS J, et al. Phytoremediation prospects of willow stands on contaminated sediment: A field trial[J]. Environmental Pollution, 2003, 126(2): 275 − 282. doi: 10.1016/S0269-7491(03)00189-1
[9] CASADO-MARTINEZ M C, BUCETA J L, BELZUNCE M J, et al. Using sediment quality guidelines for dredged material management in commercial ports from Spain[J]. Environment International, 2006, 32(3): 388 − 396. doi: 10.1016/j.envint.2005.09.003
[10] DELVALLS T A, ANDRES A, BELZUNC M J, et al. Chemical and ecotoxicological guidelines for managing disposal of dredged material[J]. Trac-Trends in Analytical Chemistry, 2004, 23(10-11): 819 − 828. doi: 10.1016/j.trac.2004.07.014
[11] BESSELL-BROWNE P, NEGRI A P, FISHER R, et al. Impacts of turbidity on corals: The relative importance of light limitation and suspended sediments[J]. Marine Pollution Bulletin, 2017, 117(1-2): 161 − 170. doi: 10.1016/j.marpolbul.2017.01.050
[12] JONES R, FISHER R, STARK C, et al. Temporal patterns in seawater quality from dredging in tropical environments[J]. Plos One, 2015, 10(10): e0137112. doi: 10.1371/journal.pone.0137112
[13] JONES R, BESSELL-BROWNE P, FISHER R, et al. Assessing the impacts of sediments from dredging on corals[J]. Marine Pollution Bulletin, 2016, 102(1): 9 − 29. doi: 10.1016/j.marpolbul.2015.10.049
[14] KAMALI S, Bernard F, ABRIAK N E, et al. Marine dredged sediments as new materials resource for road construction[J]. Waste Management, 2008, 28(5): 919 − 928. doi: 10.1016/j.wasman.2007.03.027
[15] DOBOIS V, ABRIAK N E, ZENTAR R, et al. The use of marine sediments as a pavement base material[J]. Waste Management, 2009, 29(2): 774 − 782. doi: 10.1016/j.wasman.2008.05.004
[16] WANG L, CHEN L, TSANG D C W, et al. The roles of biochar as green admixture for sediment-based construction products[J]. Cement and Concrete Composites, 2019, 104: 103348. doi: 10.1016/j.cemconcomp.2019.103348
[17] WANG L, CHEN L, TSANG D C W, et al. Green remediation of contaminated sediment by stabilization/solidification with industrial by-products and CO2 utilization[J]. Science of the Total Environment, 2018, 631-632: 1321 − 1327. doi: 10.1016/j.scitotenv.2018.03.103
[18] 李杰, 陈超美. CiteSpace: 科技文本挖掘及可视化[M]. 北京: 首都经济贸易大学出版社, 2015.
[19] WANG Q R, KIM D, DIONYSIOU D D, et al. Sources and remediation for mercury contamination in aquatic systems - a literature review[J]. Environmental Pollution, 2004, 131(2): 323 − 336. doi: 10.1016/j.envpol.2004.01.010
[20] CHAPMAN P M, HO K T, MUNNS W R, et al. Issues in sediment toxicity and ecological risk assessment[J]. Marine Pollution Bulletin, 2002, 44(4): 271 − 278. doi: 10.1016/S0025-326X(01)00329-0
[21] EL-SOROGY A S, YOUSSEF M, AL-KAHTANY K, et al. Distribution, source, contamination, and ecological risk status of heavy metals in the Red Sea-Gulf of Aqaba coastal sediments, Saudi Arabia[J]. Marine Pollution Bulletin, 2020, 158: 111411. doi: 10.1016/j.marpolbul.2020.111411
[22] MULLIGAN C N, YONG R N, GIBBS B F. An evaluation of technologies for the heavy metal remediation of dredged sediments[J]. Journal of Hazardous Materials, 2001, 85(1-2): 145 − 163. doi: 10.1016/S0304-3894(01)00226-6
[23] MEERS E, RUTTENS A, HOPGOOD M, et al. Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils[J]. Chemosphere, 2005, 61(4): 561 − 572. doi: 10.1016/j.chemosphere.2005.02.026
[24] MEERS E, HOPGOOD M, LESAGE E, et al. Enhanced phytoextraction: In search of EDTA alternatives[J]. International Journal of Phytoremediation, 2004, 6(2): 95 − 109. doi: 10.1080/16226510490454777
[25] KIM K J, KIM D H, YOO J C, et al. Electrokinetic extraction of heavy metals from dredged marine sediment[J]. Separation and Purification Technology, 2011, 79(2): 164 − 169. doi: 10.1016/j.seppur.2011.02.010
[26] PERELO L W. Review: In situ and bioremediation of organic pollutants in aquatic sediments[J]. Journal of Hazardous Materials, 2010, 177(1-3): 81 − 89. doi: 10.1016/j.jhazmat.2009.12.090
[27] LOWRY G V, JOHNSON K M. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution[J]. Environmental Science & Technology, 2004, 38(19): 5208 − 5216.
[28] KRUMINS V, PARK J W, SON E K, et al. PCB dechlorination enhancement in Anacostia River sediment microcosms[J]. Water Research, 2009, 43(18): 4549 − 4558. doi: 10.1016/j.watres.2009.08.003
[29] COLACICCO A, DE GIOANNIS G, MUNTONI A, et al. Enhanced electrokinetic treatment of marine sediments contaminated by heavy metals and PAHs[J]. Chemosphere, 2010, 81(1): 46 − 56. doi: 10.1016/j.chemosphere.2010.07.004
[30] AMMAMI M T, PORTET-KOLTALO F, BENAMAR A, et al. Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments[J]. Chemosphere, 2015, 125: 1 − 8. doi: 10.1016/j.chemosphere.2014.12.087
[31] DONI S, MACCI C, PERUZZI E, et al. Heavy metal distribution in a sediment phytoremediation system at pilot scale[J]. Ecological Engineering, 2015, 81: 146 − 157. doi: 10.1016/j.ecoleng.2015.04.049
[32] LARDICCI C, COMO S, CORTI S, et al. Recovery of the macrozoobenthic community after severe dystrophic crises in a Mediterranean coastal lagoon (Orbetello, Italy)[J]. Marine Pollution Bulletin, 2001, 42(3): 202 − 214. doi: 10.1016/S0025-326X(00)00144-2
[33] OENEMA O, VAN LIERE L, SCHOUMANS O. Effects of lowering nitrogen and phosphorus surpluses in agriculture on the quality of groundwater and surface water in the Netherlands[J]. Journal of Hydrology, 2005, 304(1-4): 289 − 301. doi: 10.1016/j.jhydrol.2004.07.044
[34] HICKEY C W, GIBBS M M. Lake sediment phosphorus release management-Decision support and risk assessment framework[J]. New Zealand Journal of Marine and Freshwater Research, 2009, 43(3): 819 − 854. doi: 10.1080/00288330909510043
[35] MATTEI P, PASTORELLI R, RAMI G, et al. Evaluation of dredged sediment co-composted with green waste as plant growing media assessed by eco-toxicological tests, plant growth and microbial community structure[J]. Journal of Hazardous Materials, 2017, 333: 144 − 153. doi: 10.1016/j.jhazmat.2017.03.026
[36] BRAGA B, DE CARVALHO T, BROSINSKY A, et al. From waste to resource: Cost-benefit analysis of reservoir sediment reuse for soil fertilization in a semiarid catchment[J]. Science of the Total Environment, 2019, 670: 158 − 169. doi: 10.1016/j.scitotenv.2019.03.083
[37] WANG L, CHEN L, CHO D W, et al. Novel synergy of Si-rich minerals and reactive MgO for stabilisation/solidification of contaminated sediment[J]. Journal of Hazardous Materials, 2019, 365: 695 − 706. doi: 10.1016/j.jhazmat.2018.11.067
[38] MIRAOUI M, ZENTAR R, ABRIAK N E. Road material basis in dredged sediment and basic oxygen furnace steel slag[J]. Construction and Building Materials, 2012, 30: 209 − 319.
[39] 何世华. 工业污泥、海泥和石粉研制轻质陶粒的研究[J]. 硅酸盐通报, 2013, 32(3): 453 − 456.
[40] 杨玥, 王健, 朱娟平, 等. 城市黑臭河涌底泥-微生物燃料电池产电性能及对底泥的修复[J]. 生态环境学报, 2015, 24(3): 463 − 468.
[41] BARDAROV I, HUBENOVA Y, MITOV M. Sediment microbial fuel cell utilizing river sediments and soil[J]. Bulgarian Chemical Communications, 2013, 45: 223 − 226.
[42] ZHU J P, ZHANG T P, ZHU N W, et al. Bioelectricity generation by wetland plant-sediment microbial fuel cells (P-SMFC) and effects on the transformation and mobility of arsenic and heavy metals in sediment[J]. Environmental Geochemistry and Health, 2019, 41(5): 2157 − 2168. doi: 10.1007/s10653-019-00266-x