-
底泥是黏土、泥沙、有机质和各种矿物的混合物,经长时间物理、化学和生物等作用及水体传输而沉积于水体底部所形成[1]。污染物汇聚到水体中,底泥能够吸附水体中的大部分污染物,主要包括营养物质(氮、磷和钾等)、有毒重金属和难降解有机污染物。当水体的动力、化学等条件发生变化时,附着在底泥上的污染物会发生脱落,再次进入水体中,造成二次污染[2],间接对底栖生物或上覆水生物产生毒害作用,甚至通过生物富集过程进入食物链影响人体健康[3]。因此底泥是一个潜在而又巨大的内污染源,是水体整治的关键环节之一。目前,底泥的疏浚已被广泛应用于世界各地的水体环境治理工程中[4],也因此产生了大量具有环境风险的疏浚底泥。
CiteSpace作为一款可视化分析工具,可以分析某一科研领域研究内容的热点和研究趋势的演替过程,了解该领域内科研成果突出的作者、机构,深入发掘微观层面和宏观层面之间的内在联系[5]。本研究旨在利用CiteSpace软件分析疏浚底泥在全球范围内相关研究,揭示近30年来国际上对其的关注热点以及研究动态,为科研工作者们了解疏浚底泥研究领域发展的总体情况、拟定相关研究目标与发现提供依据。
基于CiteSpace的疏浚底泥全球研究态势可视化分析
Visual analysis of global research on dredged sediment based on CiteSpace
-
摘要: 疏浚底泥是具有环境风险的沉积物,产生于水体治理过程且产量巨大。本文利用Web of Science引文数据库,借助CiteSpace可视化分析工具,对1994~2020年该库收录的相关文献进行分析,了解其研究领域内的热点方向和前沿动态,以构建基于全球研究视野的疏浚底泥研究图谱。全球范围内的底泥研究整体呈上升趋势,不同合作子网络的作者研究侧重点不同。发文量靠前的机构主要集中在中国、美国以及部分欧洲国家。重金属、疏浚工程、修复和污染等是复现频次较高的关键词。底泥污染的背景研究、底泥中各种污染物的修复以及底泥的资源化利用是目前疏浚底泥的研究热点,且底泥资源化利用将是未来实现绿色发展的研究前沿。Abstract: Dredged sediments are environmentally risky sediments which result from water remediation processes and are produced in huge quantities. This paper uses the Web of Science citation database and the CiteSpace visual analysis tool to analyze the relevant literatures included in the database from 1994 to 2020. This paper analyzes the hotspot directions and frontier trends in this research field, and a dredged sediments research map based on a global research perspective was constructed, showing an increasing trend with different research focuses in different cooperative sub-networks. The institutions with the highest number of publications are mainly from China, the United States and some European countries. Heavy metals, dredging engineering, remediation and pollution are keywords with a high repetition frequency. The background research of the sediment pollution, the remediation of various pollutants in sediment and the resource utilization of the sediment are the current research hotpots in the dredged sediment. And the resource utilization of sediment will be the research frontier for realizing a green development in the future.
-
Key words:
- dredged sediment /
- visual analysis /
- cooperation network /
- research hotspot /
- resource utilization
-
表 1 发文量前20的作者信息表
序号 作者 发文数/篇 隶属机构 国家 发文
年限/ah-index 被引
频次篇均
被引1 ABRIAK N E 41 里尔-杜埃国立高等矿业电信大学 法国 2006~2020 14 787 19.20 2 TACK F M G 36 根特大学 比利时 1996~2010 23 1 258 34.94 3 DELVALLS T A 29 加的斯大学 西班牙 2003~2016 17 866 29.86 4 VANDECASTEELE B 24 根特大学 比利时 2002~2015 16 800 33.33 5 FAN C X 22 中国科学院南京地理与湖泊研究所 中国 2004~2020 14 484 22.00 6 BOLAM S G 21 环境、渔业和水产养殖科学中心 英国 2004~2020 13 457 21.76 7 ZENTAR R 21 里尔-杜埃国立高等矿业电信大学 法国 2008~2020 11 531 25.29 8 JONES R 20 海洋科学研究所 澳大利亚 2015~2020 13 435 21.75 9 KAISER M J 20 班戈大学 英国 1996~2018 18 1 747 87.35 10 BENZERZOUR M 19 里尔-杜埃国立高等矿业电信大学 法国 2011~2020 6 100 5.26 11 DAUVIN J C 17 鲁昂大学 法国 2016~2020 9 316 18.59 12 RIBA I 17 加的斯大学 西班牙 2007~2016 10 393 23.12 13 MASCIANDARO G 16 比萨意大利国家研究院 意大利 2008~2020 16 193 12.06 14 TSANG D C W 15 香港理工大学 中国 2009~2020 11 494 32.93 15 VERLOO M G 15 根特大学 比利时 1996~2008 15 900 60.00 16 WANG L 14 香港理工大学 中国 2007~2020 9 337 24.07 17 ZHANG L 14 中国科学院南京地理与湖泊研究所 中国 2004~2020 10 344 24.57 18 CASADO-MARTINEZ M C 14 加的斯大学 西班牙 2004~2009 11 416 29.71 19 DE VOS B 14 自然与森林研究中心 比利时 2001~2015 11 377 26.93 20 CAPPUVNS V 13 鲁汶大学 比利时 2004~2015 12 428 32.92 表 2 关键词复线频次排名(所占比例/%)前20统计表
关键词 复现频率 1994~2020a 1996~2000a 2001~2005a 2006~2010a 2011~2015a 2016~2020a sediment 827 1(16.15) 1(1.62) 1(2.19) 1(3.10) 1(3.89) 1(5.15) heavy metal 534 2(10.43) 2(0.90) 3(1.29) 2(2.50) 2(2.26) 2(3.42) dredging 466 3(9.10) 3(0.51) 2(1.35) 3(1.70) 2(2.26) 3(3.18) sediment transport 295 4(5.76) 12(0.21) 5(0.72) 6(0.96) 5(1.46) 5(2.30) remediation 293 5(5.72) 5(0.39) 5(0.72) 8(0.84) 4(1.48) 6(2.25) impact 277 6(5.41) 18(0.10) 12(0.49) 7(0.92) 7(1.33) 4(2.52) contamination 266 7(5.19) 7(0.37) 9(0.55) 4(1.03) 6(1.39) 8(1.76) water 252 8(4.92) 4(0.43) 4(0.90) 10(0.80) 8(1.19) 11(1.56) model 229 9(4.47) 5(0.39) 9(0.55) 9(0.82) 9(1.03) 10(1.62) dredged sediment 222 10(4.33) 16(0.16) 16(0.41) 12(0.66) 11(0.94) 7(2.17) marine sediment 185 11(3.61) 16(0.16) 19(0.14) 15(0.59) 10(1.00) 9(1.68) dredged material 184 12(3.59) 14(0.18) 7(0.70) 5(1.00) 15(0.74) 16(0.94) PAHs 172 13(3.36) 10(0.29) 9(0.55) 14(0.61) 13(0.84) 14(1.07) toxicity 153 14(2.99) 11(0.27) 12(0.49) 11(0.70) 17(0.68) 17(0.76) management 134 15(2.62) 18(0.10) 20(0.08) 20(0.16) 12(0.88) 12(1.41) community 133 16(2.60) 9(0.33) 14(0.45) 13(0.62) 14(0.76) 20(0.39) contaminated sediment 130 17(2.54) 12(0.21) 17(0.39) 18(0.43) 18(0.53) 15(0.96) trace metal 129 18(2.52) 14(0.18) 14(0.45) 17(0.51) 16(0.70) 18(0.61) disturbance 123 19(2.40) 8(0.35) 8(0.57) 16(0.53) 19(0.49) 19(0.43) dynamics 118 20(2.30) 20(0.08) 18(0.31) 19(0.31) 20(0.41) 13(1.13) 注:PAHs,Polycyclic aromatic hydrocarbon。 表 3 聚类与关键词关系统计
聚类序号
及标签包含关键词
数量包含关键词复现频次
排名前20的数量聚类序号
及标签包含关键词
数量包含关键词复现频次
排名前20的数量0# eutrophication 29 2 8# trace metals 14 1 1# dredging 23 4 9# dredged material 14 2 2# benthos 19 1 10# sedimentation 13 0 3# PCBs 18 1 11# sequential extraction 13 1 4# sediment transport 18 2 12# PAHs 12 2 5# heavy metals 17 1 13# seamount 11 0 6# dredged sediments 15 1 14# phosphorus 11 0 7# toxicity 15 2 15# disposal 6 0 -
[1] 国家环境保护部办公厅. 湖泊河流环保疏浚工程技术指南(征求意见稿)[EB/OL]. (2014-06-12)[2021-03-20] . http://www.mee.gov.cn/gkml/hbb/bgth/201406/W020140612431125211013.pdf 2014. [2] 陈豪, 左其亭, 窦明. 河流底泥重金属污染研究进展[J]. 人民黄河, 2014, 36(5): 71 − 75. [3] CALMANO W, HONG J, FORSTNER U. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redoxpotential[J]. Water Science and Technology, 1993, 28(8-9): 223 − 235. doi: 10.2166/wst.1993.0622 [4] 毛志刚, 谷孝鸿, 陆小明, 等. 太湖东部不同类型湖区疏浚后沉积物重金属污染及潜在生态风险评价[J]. 环境科学, 2014, 35(1): 186 − 193. [5] 张元晶, 高彦静, 张杰. 燃料乙醇全球研究态势可视化分析[J]. 化工新型材料, 2020, 48(10): 253 − 258. [6] SINGH S P, TACK F M, VERLOO M G. Heavy metal fractionation and extractability in dredged sediment derived surface soils[J]. Water Air and Soil Pollution, 1998, 102(3-4): 313 − 328. [7] MEERS E, VANDECASTEELE B, RUTTENS A, et al. Potential of five willow species (Salix spp. ) for phytoextraction of heavy metals[J]. Environmental and Experimental Botany, 2007, 60(1): 57 − 68. doi: 10.1016/j.envexpbot.2006.06.008 [8] VARVAEKE P, LUYSSAERT S, MARTENS J, et al. Phytoremediation prospects of willow stands on contaminated sediment: A field trial[J]. Environmental Pollution, 2003, 126(2): 275 − 282. doi: 10.1016/S0269-7491(03)00189-1 [9] CASADO-MARTINEZ M C, BUCETA J L, BELZUNCE M J, et al. Using sediment quality guidelines for dredged material management in commercial ports from Spain[J]. Environment International, 2006, 32(3): 388 − 396. doi: 10.1016/j.envint.2005.09.003 [10] DELVALLS T A, ANDRES A, BELZUNC M J, et al. Chemical and ecotoxicological guidelines for managing disposal of dredged material[J]. Trac-Trends in Analytical Chemistry, 2004, 23(10-11): 819 − 828. doi: 10.1016/j.trac.2004.07.014 [11] BESSELL-BROWNE P, NEGRI A P, FISHER R, et al. Impacts of turbidity on corals: The relative importance of light limitation and suspended sediments[J]. Marine Pollution Bulletin, 2017, 117(1-2): 161 − 170. doi: 10.1016/j.marpolbul.2017.01.050 [12] JONES R, FISHER R, STARK C, et al. Temporal patterns in seawater quality from dredging in tropical environments[J]. Plos One, 2015, 10(10): e0137112. doi: 10.1371/journal.pone.0137112 [13] JONES R, BESSELL-BROWNE P, FISHER R, et al. Assessing the impacts of sediments from dredging on corals[J]. Marine Pollution Bulletin, 2016, 102(1): 9 − 29. doi: 10.1016/j.marpolbul.2015.10.049 [14] KAMALI S, Bernard F, ABRIAK N E, et al. Marine dredged sediments as new materials resource for road construction[J]. Waste Management, 2008, 28(5): 919 − 928. doi: 10.1016/j.wasman.2007.03.027 [15] DOBOIS V, ABRIAK N E, ZENTAR R, et al. The use of marine sediments as a pavement base material[J]. Waste Management, 2009, 29(2): 774 − 782. doi: 10.1016/j.wasman.2008.05.004 [16] WANG L, CHEN L, TSANG D C W, et al. The roles of biochar as green admixture for sediment-based construction products[J]. Cement and Concrete Composites, 2019, 104: 103348. doi: 10.1016/j.cemconcomp.2019.103348 [17] WANG L, CHEN L, TSANG D C W, et al. Green remediation of contaminated sediment by stabilization/solidification with industrial by-products and CO2 utilization[J]. Science of the Total Environment, 2018, 631-632: 1321 − 1327. doi: 10.1016/j.scitotenv.2018.03.103 [18] 李杰, 陈超美. CiteSpace: 科技文本挖掘及可视化[M]. 北京: 首都经济贸易大学出版社, 2015. [19] WANG Q R, KIM D, DIONYSIOU D D, et al. Sources and remediation for mercury contamination in aquatic systems - a literature review[J]. Environmental Pollution, 2004, 131(2): 323 − 336. doi: 10.1016/j.envpol.2004.01.010 [20] CHAPMAN P M, HO K T, MUNNS W R, et al. Issues in sediment toxicity and ecological risk assessment[J]. Marine Pollution Bulletin, 2002, 44(4): 271 − 278. doi: 10.1016/S0025-326X(01)00329-0 [21] EL-SOROGY A S, YOUSSEF M, AL-KAHTANY K, et al. Distribution, source, contamination, and ecological risk status of heavy metals in the Red Sea-Gulf of Aqaba coastal sediments, Saudi Arabia[J]. Marine Pollution Bulletin, 2020, 158: 111411. doi: 10.1016/j.marpolbul.2020.111411 [22] MULLIGAN C N, YONG R N, GIBBS B F. An evaluation of technologies for the heavy metal remediation of dredged sediments[J]. Journal of Hazardous Materials, 2001, 85(1-2): 145 − 163. doi: 10.1016/S0304-3894(01)00226-6 [23] MEERS E, RUTTENS A, HOPGOOD M, et al. Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils[J]. Chemosphere, 2005, 61(4): 561 − 572. doi: 10.1016/j.chemosphere.2005.02.026 [24] MEERS E, HOPGOOD M, LESAGE E, et al. Enhanced phytoextraction: In search of EDTA alternatives[J]. International Journal of Phytoremediation, 2004, 6(2): 95 − 109. doi: 10.1080/16226510490454777 [25] KIM K J, KIM D H, YOO J C, et al. Electrokinetic extraction of heavy metals from dredged marine sediment[J]. Separation and Purification Technology, 2011, 79(2): 164 − 169. doi: 10.1016/j.seppur.2011.02.010 [26] PERELO L W. Review: In situ and bioremediation of organic pollutants in aquatic sediments[J]. Journal of Hazardous Materials, 2010, 177(1-3): 81 − 89. doi: 10.1016/j.jhazmat.2009.12.090 [27] LOWRY G V, JOHNSON K M. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution[J]. Environmental Science & Technology, 2004, 38(19): 5208 − 5216. [28] KRUMINS V, PARK J W, SON E K, et al. PCB dechlorination enhancement in Anacostia River sediment microcosms[J]. Water Research, 2009, 43(18): 4549 − 4558. doi: 10.1016/j.watres.2009.08.003 [29] COLACICCO A, DE GIOANNIS G, MUNTONI A, et al. Enhanced electrokinetic treatment of marine sediments contaminated by heavy metals and PAHs[J]. Chemosphere, 2010, 81(1): 46 − 56. doi: 10.1016/j.chemosphere.2010.07.004 [30] AMMAMI M T, PORTET-KOLTALO F, BENAMAR A, et al. Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments[J]. Chemosphere, 2015, 125: 1 − 8. doi: 10.1016/j.chemosphere.2014.12.087 [31] DONI S, MACCI C, PERUZZI E, et al. Heavy metal distribution in a sediment phytoremediation system at pilot scale[J]. Ecological Engineering, 2015, 81: 146 − 157. doi: 10.1016/j.ecoleng.2015.04.049 [32] LARDICCI C, COMO S, CORTI S, et al. Recovery of the macrozoobenthic community after severe dystrophic crises in a Mediterranean coastal lagoon (Orbetello, Italy)[J]. Marine Pollution Bulletin, 2001, 42(3): 202 − 214. doi: 10.1016/S0025-326X(00)00144-2 [33] OENEMA O, VAN LIERE L, SCHOUMANS O. Effects of lowering nitrogen and phosphorus surpluses in agriculture on the quality of groundwater and surface water in the Netherlands[J]. Journal of Hydrology, 2005, 304(1-4): 289 − 301. doi: 10.1016/j.jhydrol.2004.07.044 [34] HICKEY C W, GIBBS M M. Lake sediment phosphorus release management-Decision support and risk assessment framework[J]. New Zealand Journal of Marine and Freshwater Research, 2009, 43(3): 819 − 854. doi: 10.1080/00288330909510043 [35] MATTEI P, PASTORELLI R, RAMI G, et al. Evaluation of dredged sediment co-composted with green waste as plant growing media assessed by eco-toxicological tests, plant growth and microbial community structure[J]. Journal of Hazardous Materials, 2017, 333: 144 − 153. doi: 10.1016/j.jhazmat.2017.03.026 [36] BRAGA B, DE CARVALHO T, BROSINSKY A, et al. From waste to resource: Cost-benefit analysis of reservoir sediment reuse for soil fertilization in a semiarid catchment[J]. Science of the Total Environment, 2019, 670: 158 − 169. doi: 10.1016/j.scitotenv.2019.03.083 [37] WANG L, CHEN L, CHO D W, et al. Novel synergy of Si-rich minerals and reactive MgO for stabilisation/solidification of contaminated sediment[J]. Journal of Hazardous Materials, 2019, 365: 695 − 706. doi: 10.1016/j.jhazmat.2018.11.067 [38] MIRAOUI M, ZENTAR R, ABRIAK N E. Road material basis in dredged sediment and basic oxygen furnace steel slag[J]. Construction and Building Materials, 2012, 30: 209 − 319. [39] 何世华. 工业污泥、海泥和石粉研制轻质陶粒的研究[J]. 硅酸盐通报, 2013, 32(3): 453 − 456. [40] 杨玥, 王健, 朱娟平, 等. 城市黑臭河涌底泥-微生物燃料电池产电性能及对底泥的修复[J]. 生态环境学报, 2015, 24(3): 463 − 468. [41] BARDAROV I, HUBENOVA Y, MITOV M. Sediment microbial fuel cell utilizing river sediments and soil[J]. Bulgarian Chemical Communications, 2013, 45: 223 − 226. [42] ZHU J P, ZHANG T P, ZHU N W, et al. Bioelectricity generation by wetland plant-sediment microbial fuel cells (P-SMFC) and effects on the transformation and mobility of arsenic and heavy metals in sediment[J]. Environmental Geochemistry and Health, 2019, 41(5): 2157 − 2168. doi: 10.1007/s10653-019-00266-x