[1] |
吴锋, 战金艳, 邓祥征, 等. 中国湖泊富营养化影响因素研究——基于中国22个湖泊实证分析[J]. 生态环境学报, 2012, 21(1): 94-100. doi: 10.3969/j.issn.1674-5906.2012.01.018
|
[2] |
LIU W, QIU R L. Water eutrophication in China and the combating strategies[J]. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 2007, 82.9: 781-786.
|
[3] |
GALLOWAY J N. The global nitrogen cycle: past, present and future[J]. Biogeochemistry, 2004, 70(2): 153-226. doi: 10.1007/s10533-004-0370-0
|
[4] |
ZHANG W S, LI H P, LI Y L. Spatio-temporal dynamics of nitrogen and phosphorus input budgets in a global hotspot of anthropogenic inputs[J]. Science of the Total Environment, 2019, 656: 1108-1120. doi: 10.1016/j.scitotenv.2018.11.450
|
[5] |
张维理, 武淑霞, 冀宏杰, 等. 中国农业面源污染形势估计及控制对策 I. 21世纪初期中国农业面源污染的形势估计[J]. 中国农业科学, 2004(7): 1008-1017. doi: 10.3321/j.issn:0578-1752.2004.07.012
|
[6] |
张锋. 中国化肥投入的面源污染问题研究[D]. 南京: 南京农业大学, 2011.
|
[7] |
FAN L C, YUAN Y M, YING Z C, et al. Decreasing farm number benefits the mitigation of agricultural non-point source pollution in China[J]. Environmental Science and Pollution Research, 2019, 26.1: 464-472.
|
[8] |
郝璐, 孙阁. 城市化对流域生态水文过程的影响研究综述[J]. 生态学报, 2021, 41(1): 13-26.
|
[9] |
REISINGER A J, GROFFMAN P M, ROSI-MARSHALL E J. Nitrogen-cycling process rates across urban ecosystems[J]. FEMS Microbiology Ecology. 2016, 92 (12).
|
[10] |
蔡梓灿, 王晟, 陈岩, 等. 长江经济带人为磷输入驱动效应多时空测度[J]. 环境科学与技术, 2020, 43(6): 197-204.
|
[11] |
RYAN Z J, ERIC C, MARTY M. Load estimations using loadest within agriculturally dominated watersheds across the continental united states[P]. American Ecological Engineering Society 10th Annual Meeting, 2010.
|
[12] |
DOUGLAS-MANKIN K R, SRINIVASAN R, ARNOLD J G. Soil and Water Assessment Tool (SWAT) model: Current developments and applications[J]. Transactions of the ASABE, 2010, 53,(5): 1423-1431. doi: 10.13031/2013.34915
|
[13] |
王雨珊. 中国七大流域人为净磷输入及河流入海磷通量研究[D]. 北京: 北京林业大学, 2020.
|
[14] |
HOWARTH R W, SWANEY D P, BOYER E W, et al. The influence of climate on average nitrogen export from large watersheds in the Northeastern United States[J]. Nitrogen cycling in the Americas:natural and anthropogenic influences and controls. Springer, Dordrecht, 2006: 163-186.
|
[15] |
HONG B, SWANEY D P, MORTH C M, et al. Evaluating regional variation of net anthropogenic nitrogen and phosphorus inputs (NANI/NAPI), major drivers, nutrient retention pattern and management implications in the multinational areas of Baltic Sea basin[J]. Ecological Modelling, 2012, 227: 117-135. doi: 10.1016/j.ecolmodel.2011.12.002
|
[16] |
姚梦雅, 胡敏鹏, 陈丁江. 1980~2015年长江流域净人为氮输入与河流氮输出动态特征[J]. 环境科学, 2021, 42(12): 5777-5785. doi: 10.13227/j.hjkx.202104259
|
[17] |
陈新闯, 李锋, 李小倩, 等. 珠三角城市群生态空间分区方法与管控对策[J]. 生态学报, 2021, 41(13): 5233-5241.
|
[18] |
赵鑫. 珠三角地区土地利用变化及生态承载力研究[D]. 赣州: 江西理工大学, 2020.
|
[19] |
MAO Y P, ZHANG H, TANG W Z, et al. Net anthropogenic nitrogen and phosphorus inputs in Pearl River Delta region (2008–2016)[J]. Journal of Environmental Management, 2021, 282: 111952. doi: 10.1016/j.jenvman.2021.111952
|
[20] |
The World Bank. East Asia’s Changing Urban Landscape: Measuring a Decade of Spatial Growth[EB]. [2015-1-26]. https://www.worldbank.org/en/topic/urbandevelopment/publication/east-asias-changing-urban-landscape-measuring-a-decade-of-spatial-growth
|
[21] |
YU X, PAN Y P, SONG W, et al. Wet and dry nitrogen depositions in the Pearl River Delta, South China: observations at three typical sites with an emphasis on water-soluble organic nitrogen[J]. Journal of Geophysical Research: Atmospheres, 2020, 125, (3).
|
[22] |
刘艳萍. 洞庭湖流域人类活动净氮/磷输入(NANI/NAPI)时空分布评估[D]. 北京: 北京林业大学, 2019.
|
[23] |
HAN Y G, FAN Y T, YANG P L, et al. Net anthropogenic nitrogen inputs (NANI) index application in Mainland China[J]. Geoderma, 2014, 213(2): 87-94.
|
[24] |
高伟, 高波, 严长安, 等. 鄱阳湖流域人为氮磷输入演变及湖泊水环境响应[J]. 环境科学学报, 2016, 36(9): 3137-3145.
|
[25] |
JORDAN T E, WELLER D E. Human contributions to terrestrial nitrogen flux[J]. BioScience, 1996, 46.9: 655-664.
|
[26] |
ZHANG W S, SWANEY D P, LI X Y, et al. Anthropogenic point-source and non-point-source nitrogen inputs into Huai River basin and their impacts on riverine ammonia–nitrogen flux[J]. Biogeosciences, 2015, 12(14): 4275-4289. doi: 10.5194/bg-12-4275-2015
|
[27] |
HAN Y G, FAN Y T, YANG P L, et al. Net anthropogenic phosphorus inputs (NAPI) index application in Mainland China[J]. Chemosphere, 2013, 90(2): 329-337. doi: 10.1016/j.chemosphere.2012.07.023
|
[28] |
HAN Y G, FENG G, SWANEY D P, et al. Global and regional estimation of net anthropogenic nitrogen inputs (NANI)[J]. Geoderma, 2020, 361: 114066. doi: 10.1016/j.geoderma.2019.114066
|
[29] |
GAO W, SWANEY D P, HONG B, et al. Evaluating anthropogenic N inputs to diverse lake basins: A case study of three Chinese lakes[J]. Ambio, 2015, 44(7): 635-646. doi: 10.1007/s13280-015-0638-8
|
[30] |
HU M P, LIU Y M, ZHANG Y F, et al. Long-term (1980–2015) changes in net anthropogenic phosphorus inputs and riverine phosphorus export in the Yangtze River basin[J]. Water Research, 2020, 177: 115779. doi: 10.1016/j.watres.2020.115779
|
[31] |
CHEN F, HOU L J, LIU M, et al. Net anthropogenic nitrogen inputs (NANI) into the Yangtze River basin and the relationship with riverine nitrogen export[J]. Journal of Geophysical Research:Biogeosciences, 2016, 121(2): 451-465. doi: 10.1002/2015JG003186
|
[32] |
黄成, 侯伟, 顾继光, 等. 珠江三角洲城市周边典型中小型水库富营养化与蓝藻种群动态[J]. 应用与环境生物学报, 2011, 17(3): 295-302.
|
[33] |
曾丹娜, 牛丽霞, 陶伟, 等. 夏季珠江口水域营养盐分布特征及其富营养化评价[J]. 广东海洋大学学报, 2020, 40(3): 73-82. doi: 10.3969/j.issn.1673-9159.2020.03.010
|
[34] |
陈志坚, 陈楠, 陈庆垒. 东莞畜禽养殖现状及存在的问题[J]. 当代畜禽养殖业, 2017(4): 51-52. doi: 10.3969/j.issn.1005-5959.2017.04.045
|
[35] |
徐浩林, 杨培岭, 邢伟民, 等. 湖北省2008~2017年人类活动净氮输入状况[J]. 中国环境科学, 2020, 40(9): 4017-4028. doi: 10.3969/j.issn.1000-6923.2020.09.034
|
[36] |
丁雪坤, 王云琦, 韩玉国, 等. 三峡库区人类活动净氮输入量估算及其影响因素[J]. 中国环境科学, 2020, 40(1): 206-216. doi: 10.3969/j.issn.1000-6923.2020.01.023
|
[37] |
李影, 刘宏斌, 雷秋良等. 洱海流域乡镇尺度上人类活动对净氮输入量的影响[J]. 环境科学, 2018, 39(9): 4189-4198.
|
[38] |
CHEN C, WEN Z G, WANG Y H. Nitrogen flow patterns in the food system among cities within urban agglomeration: A case study of the Pearl River Delta region[J]. Science of The Total Environment, 2020, 703: 135506. doi: 10.1016/j.scitotenv.2019.135506
|
[39] |
MOZAFFARIAN D, ANGELL S Y, LANG T, et al. Role of government policy in nutrition—barriers to and opportunities for healthier eating[J]. Brit Med J, 2018: 361.
|
[40] |
李健伟, 彭永臻, 张亮. 主流城市污水部分厌氧氨氧化技术的研究与工程化应用[J]. 给水排水, 2020, 56(S2): 5-9+16.
|
[41] |
吴银宝, 吴根义, 廖新俤. 实施清洁生产源头控制畜禽养殖污染[J]. 农业环境科学学报, 2021, 40(11): 2283-2291. doi: 10.11654/jaes.2021-1101
|
[42] |
广东省农业农村厅. 2020年广东省畜禽粪污综合利用率将达到75%以上[EB]. [2018-1-31]. http://dara.gd.gov.cn/gzdt2266/content/post_1555779.html
|
[43] |
郑莉, 许燕滨, 黄绍松, 等. 集约化养殖场畜禽粪便治理及资源化利用的关键技术研究[R]. 广州:广东工业大学, 2019-06-12.
|
[44] |
MENCARONI M, DAL F N, FURLANETTO J, et al. Identifying N fertilizer management strategies to reduce ammonia volatilization: Towards a site-specific approach[J]. Journal of Environmental Management, 2021, 277: 111445. doi: 10.1016/j.jenvman.2020.111445
|
[45] |
訾利梅, 方一平. 不同养分替代模式对控制氮磷流失的影响[J]. 安徽农学通报, 2021, 27(7): 73-75. doi: 10.3969/j.issn.1007-7731.2021.07.029
|
[46] |
薛利红, 李刚华, 侯朋福, 等. 太湖地区稻田持续高产的减量施氮技术体系研究[J]. 农业环境科学学报, 2016, 35(4): 729-736. doi: 10.11654/jaes.2016.04.017
|
[47] |
WANG X L, XIONG J B, HE Z L. Activated dolomite phosphate rock fertilizers to reduce leaching of phosphorus and trace metals as compared to superphosphate[J]. Journal of Environmental Management, 2020, 255: 109872. doi: 10.1016/j.jenvman.2019.109872
|