[1] XIE J Y, GU X Y, TONG F, et al. Surface complexation modeling of Cr(Ⅵ) adsorption at the goethite-water interface [J]. Journal of Colloid and Interface Science, 2015, 455: 55-62. doi: 10.1016/j.jcis.2015.05.041
[2] RAKHUNDE R, DESHPANDE L, JUNEJA H D. Chemical speciation of chromium in water: A review [J]. Critical Reviews in Environmental Science and Technology, 2012, 42(7): 776-810. doi: 10.1080/10643389.2010.534029
[3] LADEIRA A C Q, CIMINELLI V S T, DUARTE H A, et al. Mechanism of anion retention from EXAFS and density functional calculations: Arsenic (Ⅴ) adsorbed on gibbsite [J]. Geochimica et Cosmochimica Acta, 2001, 65(8): 1211-1217. doi: 10.1016/S0016-7037(00)00581-0
[4] MCGECHAN M B, LEWIS D R. SW—soil and water: Sorption of phosphorus by soil, part 1: Principles, equations and models [J]. Biosystems Engineering, 2002, 82(1): 1-24. doi: 10.1006/bioe.2002.0054
[5] ZHANG J, CHEN L P, YIN H L, et al. Mechanism study of humic acid functional groups for Cr(Ⅵ) retention: Two-dimensional FTIR and 13C CP/MAS NMR correlation spectroscopic analysis [J]. Environmental Pollution, 2017, 225: 86-92. doi: 10.1016/j.envpol.2017.03.047
[6] SCHEEL T, DÖRFLER C, KALBITZ K. Precipitation of dissolved organic matter by aluminum stabilizes carbon in acidic forest soils [J]. Soil Science Society of America Journal, 2007, 71(1): 64-74. doi: 10.2136/sssaj2006.0111
[7] MIKUTTA R, KLEBER M, TORN M S, et al. Stabilization of soil organic matter: Association with minerals or chemical recalcitrance? [J]. Biogeochemistry, 2006, 77(1): 25-56. doi: 10.1007/s10533-005-0712-6
[8] KLEBER M, EUSTERHUES K, KEILUWEIT M, et al. Mineral-organic associations: Formation, properties, and relevance in soil environments [J]. Advances in Agronomy, 2015, 130: 1-140.
[9] BERKOWITZ J, ANDERSON M A, GRAHAM R C. Laboratory investigation of aluminum solubility and solid-phase properties following alum treatment of lake waters [J]. Water Research, 2005, 39(16): 3918-3928. doi: 10.1016/j.watres.2005.06.025
[10] CHEN C M, DYNES J J, WANG J, et al. Properties of Fe-organic matter associations via coprecipitation versus adsorption [J]. Environmental Science & Technology, 2014, 48(23): 13751-13759.
[11] CHEN K Y, CHEN T Y, CHAN Y T, et al. Stabilization of natural organic matter by short-range-order iron hydroxides [J]. Environmental Science & Technology, 2016, 50(23): 12612-12620.
[12] WANG H, ZHANG J, ZHU J Q, et al. Synergistic/antagonistic effects and mechanisms of Cr(Ⅵ) adsorption and reduction by Fe(III)-HA coprecipitates [J]. Journal of Hazardous Materials, 2021, 409: 124529. doi: 10.1016/j.jhazmat.2020.124529
[13] 徐仁扣. 酸化红壤的修复原理与技术[M]. 北京: 科学出版社, 2013.
[14] DU H H, HUANG Q Y, ZHOU M, et al. Sorption of Cu(Ⅱ) by Al hydroxide organo-mineral coprecipitates: Microcalorimetry and NanoSIMS observations [J]. Chemical Geology, 2018, 499: 165-171. doi: 10.1016/j.chemgeo.2018.09.026
[15] DAS S, ESSILFIE-DUGHAN J, HENDRY M J. Fate of adsorbed arsenate during phase transformation of ferrihydrite in the presence of gypsum and alkaline conditions [J]. Chemical Geology, 2015, 411: 69-80. doi: 10.1016/j.chemgeo.2015.06.031
[16] DAS S, HENDRY M J, ESSILFIE-DUGHAN J. Transformation of two-line ferrihydrite to goethite and hematite as a function of pH and temperature [J]. Environmental Science & Technology, 2011, 45(1): 268-275.
[17] DAS S, HENDRY M J, ESSILFIE-DUGHAN J. Effects of adsorbed arsenate on the rate of transformation of 2-line ferrihydrite at pH 10 [J]. Environmental Science & Technology, 2011, 45(13): 5557-5563.
[18] ZHENG Z Y, ZHENG Y, TIAN X C, et al. Interactions between iron mineral-humic complexes and hexavalent chromium and the corresponding bio-effects [J]. Environmental Pollution, 2018, 241: 265-271. doi: 10.1016/j.envpol.2018.05.060
[19] BARNIE S, ZHANG J, WANG H, et al. The influence of pH, co-existing ions, ionic strength, and temperature on the adsorption and reduction of hexavalent chromium by undissolved humic acid [J]. Chemosphere, 2018, 212: 209-218. doi: 10.1016/j.chemosphere.2018.08.067
[20] 孟令利. 氢氧化铝在苛性碱中溶解动力学研究 [J]. 轻金属, 2012(9): 23-27. doi: 10.3969/j.issn.1002-1752.2012.09.006 MENG L L. Study on dissolution kinetics of the aluminium hydroxide in the caustic soda [J]. Light Metals, 2012(9): 23-27(in Chinese). doi: 10.3969/j.issn.1002-1752.2012.09.006
[21] BANFIELD J F, WELCH S A, ZHANG H Z, et al. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products [J]. Science, 2000, 289(5480): 751-754. doi: 10.1126/science.289.5480.751
[22] 李波, 邵玲玲. 氧化铝、氢氧化铝的XRD鉴定 [J]. 无机盐工业, 2008, 40(2): 54-57. doi: 10.3969/j.issn.1006-4990.2008.02.019 LI B, SHAO L L. Appraisal of alumina and aluminium hydroxide by XRD [J]. Inorganic Chemicals Industry, 2008, 40(2): 54-57(in Chinese). doi: 10.3969/j.issn.1006-4990.2008.02.019
[23] YU G, SAHA U K, KOZAK L M, et al. Combined effects of tannate and ageing on structural and surface properties of aluminum precipitates [J]. Clays and Clay Minerals, 2007, 55(4): 369-379. doi: 10.1346/CCMN.2007.0550405
[24] 张哲, 李殿卿, 白立光, 等. 双铝法制拟薄水铝石的制备条件对其胶溶性能的影响 [J]. 化学推进剂与高分子材料, 2021, 19(1): 48-51. ZHANG Z, LI D Q, BAI L G, et al. Influence of preparation conditions of pseudo-boehmite prepared by double aluminum method on its peptization performance [J]. Chemical Propellants & Polymeric Materials, 2021, 19(1): 48-51(in Chinese).
[25] 苗壮, 史建公, 郝建薇, 等. 拟薄水铝石的胶溶性与结构的关系 [J]. 石油学报(石油加工), 2016, 32(3): 493-500. MIAO Z, SHI J G, HAO J W, et al. Relationship between peptization and structure of pseudo-boehmite [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2016, 32(3): 493-500(in Chinese).
[26] YU G D, FU F L, YE C J, et al. Behaviors and fate of adsorbed Cr(Ⅵ) during Fe(Ⅱ)-induced transformation of ferrihydrite-humic acid co-precipitates [J]. Journal of Hazardous Materials, 2020, 392: 122272. doi: 10.1016/j.jhazmat.2020.122272
[27] CHEN K Y, TZOU Y M, CHAN Y T, et al. Removal and simultaneous reduction of Cr(Ⅵ) by organo-Fe(Ⅲ) composites produced during coprecipitation and coagulation processes [J]. Journal of Hazardous Materials, 2019, 376: 12-20. doi: 10.1016/j.jhazmat.2019.04.055