[1] 戴树桂. 环境化学[M]. 北京: 高等教育出版社, 2002.
[2] KHALIL M, RASMUSSEN R A. Atmospheric methyl chloride[J]. Atmospheric Environment, 1999, 33(8): 1305 − 1321. doi: 10.1016/S1352-2310(98)00234-9
[3] 朱虹, 孙杰, 李剑超. 印染废水处理技术[M]. 北京: 中国纺织出版社, 2004.
[4] WANG W, WU Y. Sequential coupling of bio-augmented permeable reactive barriers for remediation of 1, 1, 1-trichloroethane contaminated groundwater[J]. Environmental Science and Pollution Research, 2019, 26: 12042 − 12054. doi: 10.1007/s11356-019-04676-3
[5] SAMANIPOUR S, DIMITRIOU-CHRISTIDIS P, NABI D, et al. Elevated concentrations of 4-bromobiphenyl and 1, 3, 5-Tribromobenzene found in deep water of Lake Geneva based on GC×GC-ENCI-TOFMS and GC×GC-μECD[J]. ACS Omega, 2017, 2(2): 641 − 652. doi: 10.1021/acsomega.6b00440
[6] ZHOU C, PAGANO J, MCGOLDRICK D J, et al. Legacy polybrominated diphenyl ethers (PBDEs) trends in top predator fish of the Laurentian Great Lakes (GL) from 1979 to 2016: Will concentrations continue to decrease?[J]. Environmental Science & Technology, 2019, 53(12): 6650 − 6659.
[7] ASPLUND G, GRIMVALL A. Organohalogens in nature[J]. Environmental Science & Technology, 1991, 25(8): 1346 − 1350.
[8] MAJEWSKI M S , CAPEL P D. Pesticides in the atmosphere: Distribution, trends, and governing factors[M]. Ann Arbor Press, Chelsea, Michigan, 1995.
[9] SIMONICH S L, HITES R A. Global distribution of persistent organochlorine compounds[J]. Science, 1995, 269(5232): 1851 − 1854. doi: 10.1126/science.7569923
[10] 王昭, 石建省, 张兆吉, 等. 我国“水中优先控制有机物”对地下水污染的预警性研究[J]. 水资源保护, 2009(1): 90. doi: 10.3969/j.issn.1004-6933.2009.01.024
[11] STRINGER R , JOHNSTON P . Chlorine and the environment: An overview of the chlorine industry [M]. Kluwer Academic Publishers, Dordrecht, 2001.
[12] AMOS B K, SUCHOMEL E J, PENNELL K D, et al. Microbial activity and distribution during enhanced contaminant dissolution from a NAPL source zone[J]. Water Research, 2008, 42(12): 2963-2974. doi: 10.1016/j.watres.2008.03.015
[13] AMOS B K, SUCHOMEL E J, NELL K D P, et al. Spatial and temporal distributions of geobacter lovleyi and dehalococcoides spp. during bioenhanced PCE-NAPL dissolution[J]. Environmental Science & Technology, 2009, 43(6): 1977-1985.
[14] LOHNER S T, TIEHM A. Application of electrolysis to stimulate microbial reductive PCE dechlorination and oxidative VC biodegradation[J]. Environmental Science & Technology, 2009, 43(18): 7098-7104.
[15] WANG Y, WEI Y, SONG W, et al. Photocatalytic hydrodehalogenation for the removal of halogenated aromatic contaminants[J]. ChemCatChem, 2019, 11: 258-268. doi: 10.1002/cctc.201801222
[16] SCHNEIDER J, MATSUOKA M, TAKEUCHI M, et al. Understanding TiO2 photocatalysis: mechanisms and materials[J]. Chemical Reviews, 2014, 114(19): 9919-9986. doi: 10.1021/cr5001892
[17] CHOI W. Pure and modified TiO2 photocatalysts and their environmental applications[J]. Catalysis Surveys from Asia, 2006, 10: 16-28. doi: 10.1007/s10563-006-9000-2
[18] ROSS A B , FARHATAZIZ A. Selective specific rates of reactions of transients in water and aqueous solutions. Part III. Hydroxyl radical and perhydroxyl radical and their radical ions[M]. National Standard Reference Data Series, National Bureau of Standards, 1977.
[19] GHOSH I, GHOSH T, et al. Reduction of aryl halides by consecutive visible light-induced electron transfer processes[J]. Science, 2014, 346(6210): 725-728. doi: 10.1126/science.1258232
[20] LU J Z, KHETRAPAL N S, JOHNSON J A. et al. "π-Hole–π" Interaction promoted photocatalytic hydrodefluorination via inner-sphere electron transfer[J]. Journal of the American Chemical Society, 2016, 138: 15805-15808. doi: 10.1021/jacs.6b08620
[21] CHEN C, MA W, ZHAO J. Semiconductor-Mediated photodegradation of pollutants under visible-light irradiation[J]. Chemical Society Reviews, 2011, 39: 4206-4219.
[22] FRANK S N, BARD A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder[J]. Journal of the American Chemical Society, 1977, 99: 303-304. doi: 10.1021/ja00443a081
[23] GEIGER C L , CARVALHO-KNIGHTON K , NOVAES-CARD S , et al. A review of environmental applications of nanoscale and microscale reactive metal particles[M]. ACS Symposium Series, American Chemical Society: Washington, DC, 2010.
[24] ZHANG Z, YU Y, WANG P. Hierarchical top-porous/bottom-tubular TiO2 nanostructures decorated with Pd nanoparticles for efficient photoelectrocatalytic decomposition of synergistic pollutants[J]. ACS Appl Materials and Interfaces, 2012, 4(2): 990-996. doi: 10.1021/am201630s
[25] LI L, CHANG W, WANG Y. et al. Rapid photocatalytic deep-debromination of polybrominated diphenyl ethers on Pd-TiO2: intermediates and pathways[J]. Chemistry:A European Journal, 2014(20): 11163-11170.