[1] |
LIU F F, FAN J L, DU J H, et al. Intensified nitrogen transformation in intermittently aerated constructed wetlands: Removal pathways and microbial response mechanism[J]. Science of the Total Environment, 2019, 650: 2880-2887.
|
[2] |
王宁, 黄磊, 罗星, 等. 生物炭添加对曝气人工湿地脱氮及氧化亚氮释放的影响[J]. 环境科学, 2018, 39(10): 4505-4511.
|
[3] |
LIANG B, LEHMANN J, SOLOMON D, et al. Black carbon increases cation exchange capacity in soil[J]. Soil Science Society of America Journal, 2006, 70(5): 1719-1730.
|
[4] |
ZHOU X, LIANG C L, JIA L X, et al. An innovative biochar-amended substrate vertical flow constructed wetland for low C/N wastewater treatment: Impact of influent strengths[J]. Bioresource Technology, 2018, 247: 844-850.
|
[5] |
SUN Y F, QI S Y, ZHENG F P, et al. Organics removal, nitrogen removal and N2O emission in subsurface wastewater infiltration systems amended with/without biochar and sludge[J]. Bioresource Technology, 2018, 249: 57-61.
|
[6] |
于小彦, 杨艳芳, 张平究, 等. 不同水分条件下生物质炭添加对湿地土壤微生物群落结构的影响[J]. 生态与农村环境学报, 2019, 35(9): 1163-1171.
|
[7] |
DENG C R, HUANG L, LIANG Y K, et al. Response of microbes to biochar strengthen nitrogen removal in subsurface flow constructed wetlands: Microbial community structure and metabolite characteristics[J]. Science of the Total Environment, 2019, 694: 133678.
|
[8] |
HUANG L, CHEN Y C, LIU G, et al. Non-isothermal pyrolysis characteristics of giant reed (Arundo donax L.) using thermogravimetric analysis[J]. Energy, 2015, 87: 31-40.
|
[9] |
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
|
[10] |
BRASSARD P, GODBOUT S, RAGHAVAN V. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved[J]. Journal of Environmental Management, 2016, 181: 484-497.
|
[11] |
ZHOU X, WANG X Z, ZHANG H, et al. Enhanced nitrogen removal of low C/N domestic wastewater using a biochar-amended aerated vertical flow constructed wetland[J]. Bioresource Technology, 2017, 241: 269-275.
|
[12] |
EYKELBOSH A J, JOHNSON M S, COUTO E G. Biochar decreases dissolved organic carbon but not nitrate leaching in relation to vinasse application in a Brazilian sugarcane soil[J]. Journal of Environmental Management, 2015, 149: 9-16.
|
[13] |
CUI X Q, HAO H L, ZHANG C K, et al. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars[J]. Science of the Total Environment, 2016, 539: 566-575.
|
[14] |
TANG J F, LI X H, LUO Y, et al. Spectroscopic characterization of dissolved organic matter derived from different biochars and their polycylic aromatic hydrocarbons (PAHs) binding affinity[J]. Chemosphere, 2016, 152: 399-406.
|
[15] |
CAO X D, MA L N, LIANG Y, et al. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar[J]. Environmental Science Technology, 2011, 45(11): 4884-4889.
|
[16] |
AL-WABEL M I, AL-OMRAN A, EL-NAGGAR A H, et al. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes[J]. Bioresource Technology, 2013, 131: 374-379.
|
[17] |
KHAN S, WAQAS M, DING F H, et al. The influence of various biochars on the bioaccessibility and bioaccumulation of PAHs and potentially toxic elements to turnips (Brassica rapa L.)[J]. Journal of Hazardous Materials, 2015, 300: 243-253.
|
[18] |
GUPTA P, ANN T W, LEE S M. Use of biochar to enhance constructed wetland performance in wastewater reclamation[J]. Environmental Engineering Research, 2016, 21(1): 36-44.
|
[19] |
HOU J, HUANG L, YANG Z M, et al. Adsorption of ammonium on biochar prepared from giant reed[J]. Environmental Science and Pollution Research, 2016, 23(19): 19107-19115.
|
[20] |
VERHAMME D T, PROSSER J I, NICOL G W. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms[J]. The International Society for Microbial Ecology Journal, 2011, 5(6): 1067-1071.
|
[21] |
DONG X, MA L Q, GRESS J, et al. Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: Important role of dissolved organic matter from biochar[J]. Journal of Hazardous Materials, 2014, 267: 62-70.
|
[22] |
ZIMMERMAN A R, GAO B, AHN M Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils[J]. Soil Biology and Biochemistry, 2011, 43(6): 1169-1179.
|
[23] |
HOEFEL D, MONIS P T, GROOBY W L, et al. Profiling bacterial survival through a water treamentprocess and subsequent distribution system[J]. Journal of Applied Microbiology, 2005, 99(1): 175-186.
|
[24] |
MIAO Y, LIAO R, ZHANG X X, et al. Metagenomic insights into Cr(VI) effect on microbial communities and functional genes of an expanded granular sludge bed reactor treating high-nitrate wastewater[J]. Water Research, 2015, 76: 43-52.
|
[25] |
KONG Q, WANG Z B, NIU P F, et al. Greenhouse gas emission and microbial community dynamics during simultaneous nitrification and denitrification process[J]. Bioresource Technology, 2016, 210: 94-100. doi: 10.1016/j.biortech.2016.02.051
|
[26] |
FAN J L, ZHANG J, GUO W S, et al. Enhanced long-term organics and nitrogen removal and associated microbial community in intermittently aerated subsurface flow constructed wetlands[J]. Bioresource Technology, 2016, 214: 871-875.
|
[27] |
王娜, 高婕, 魏静, 等. 三江平原湿地开垦对土壤微生物群落结构的影响[J]. 环境科学, 2019, 40(5): 2375-2381.
|
[28] |
IORHEMEN O T, HAMZA R A, SHENG Z, et al. Submerged aerobic granular sludge membrane bioreactor (AGMBR): Organics and nutrients (nitrogen and phosphorus) removal[J]. Bioresource Technology Reports, 2019, 6: 260-267. doi: 10.1016/j.biteb.2019.03.015
|
[29] |
HUANG J, CAO C, YAN C, et al. Comparison of iris pseudacorus wetland systems with unplanted systems on pollutant removal and microbial community under nanosilver exposure[J]. Science of the Total Environment, 2018, 624: 1336-1347.
|
[30] |
CHEN Y S, ZHAO Z, PENG Y, et al. Performance of a full-scale modified anaerobic/anoxic/oxic process: High-throughput sequence analysis of its microbial structures and their community functions[J]. Bioresource Technology, 2016, 220: 225-232. doi: 10.1016/j.biortech.2016.07.095
|
[31] |
端正花, 潘留明, 陈晓欧, 等. 低温下活性污泥膨胀的微生物群落结构研究[J]. 环境科学, 2016, 37(3): 1070-1074.
|
[32] |
FAGBOHUNGBE M O, HERBERT B M J, HURST L, et al. The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion[J]. Waste Management, 2017, 61: 236-249.
|
[33] |
FAN J J, ZHANG B, ZHANG J, et al. Intermittent aeration strategy to enhance organics and nitrogen removal in subsurface flow constructed wetlands[J]. Bioresource Technology, 2013, 141: 117-122.
|
[34] |
LI F, LU L, ZHENG X, et al. Enhanced nitrogen removal in constructed wetlands: Effects of dissolved oxygen and stepfeeding[J]. Bioresource Technology, 2014, 169: 395-402. doi: 10.1016/j.biortech.2014.07.004
|
[35] |
FENG Z, ZHU L. Impact of biochar on soil N2O emissions under different biochar-carbon/fertilizer-nitrogen ratios at a constant moisture condition on a silt loam soil[J]. Science of the Total Environment, 2017, 584-585: 776-782. doi: 10.1016/j.scitotenv.2017.01.115
|