[1] WANG B D, XIN M, WEI Q S, et al. A historical overview of coastal eutrophication in the china seas[J]. Marine Pollution Bulletin, 2018, 136: 394 − 400. doi: 10.1016/j.marpolbul.2018.09.044
[2] LEE B H, SCHOLZ M. What is the role of phragmites australis in experimental constructed wetland filters treating urban runoff[J]. Ecological Engineering, 2006, 29(1): 87 − 95.
[3] VYMAZAL J. Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment, 2007, 380(1−3): 48 − 65. doi: 10.1016/j.scitotenv.2006.09.014
[4] SI Z H, SONG X S, WANG Y H, et al. Intensified heterotrophic denitrification in constructed wetlands using four solid carbon sources: denitrification efficiency and bacterial community structure[J]. Bioresource Technology, 2018, 267: 416 − 425. doi: 10.1016/j.biortech.2018.07.029
[5] SHEN Z Q, ZHOU Y X, LIU J, et al. Enhanced removal of nitrate using starch/PCL blends as solid carbon source in a constructed wetland[J]. Bioresource Technology, 2015, 175: 239 − 244. doi: 10.1016/j.biortech.2014.10.006
[6] 联芳, 朱伟, 赵建, 等. 人工湿地处理低碳氮比污染河水时的脱氮机理[J]. 环境科学学报, 2006, 26(11): 1821 − 1827.
[7] RUSTIGE H, NOLDE E. Nitrogen elimination from landfill leachates using an extra carbon source in subsurface flow constructed wetlands[J]. Water Science and Technology, 2007, 56(3): 125 − 133. doi: 10.2166/wst.2007.506
[8] 肖蕾, 贺锋, 梁雪, 等. 不同碳源添加量对垂直流人工湿地污水处理效果的影响[J]. 环境工程学报, 2013, 7(6): 2074 − 2080.
[9] HUETT D O, MORRIS S G, SMITH G, et al. Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands[J]. Water Research, 2005, 39(14): 3259 − 3272. doi: 10.1016/j.watres.2005.05.038
[10] 张辉鹏, 李思博, 张超杰, 等. 以可生物降解固体为碳源的城市污水厂尾水脱氮研究[J]. 环境工程, 2016, 34(7): 11 − 15.
[11] 范振兴, 王建龙. 利用聚乳酸作为反硝化固体碳源的研究[J]. 环境科学, 2009, 30(8): 2315 − 2319.
[12] ABU‐GHARARAH Z H. Biological denitrification of high nitrate water: Influence of type of carbon source and nitrate loading[J]. Journal of Environmental Science and Health, Part A, 1996, 31(7): 1651 − 1668.
[13] 李洪静, 陈银广, 顾国维. 丙酸/乙酸对低能耗生物除磷脱氮系统的影响[J]. 中国环境科学, 2008, 28(8): 673 − 678.
[14] XIONG R, YU X X, YU L J, et al. Biological denitrification using polycaprolactone-peanut shell as slow-release carbon source treating drainage of municipal WWTP[J]. Chemosphere, 2019, 235: 434 − 439. doi: 10.1016/j.chemosphere.2019.06.198
[15] JIA L X, GOU E F, LIU H, et al. Exploring utilization of recycled agricultural biomass in constructed wetlands: characterization of the driving force for high-rate nitrogen removal[J]. Environmental Science & Technology, 2019, 53(3): 1258 − 1268.
[16] BOUSSAID F, MARTIN G, MORVAN J. et al. Denitrification in-situ of groundwaters with solid carbon matter[J]. Environmental Technology, 1988, 9(8): 803 − 816.
[17] 张羽, 宋永会, 高红杰, 等. 人工湿地反硝化外加固体碳源选择研究[J]. 环境保护科学, 2017, 43(1): 66 − 70.
[18] 常宝军, 杨富莹. 人工湿地外加植物碳源强化脱氮的应用探讨[J]. 山西建筑, 2016, 42(12): 108 − 109.
[19] 丁怡, 唐海燕, 宋新山, 等. 调控碳氧水平促进人工湿地脱氮的研究进展[J]. 水处理技术, 2019, 45(6): 19 − 22.
[20] 赵文莉, 郝瑞霞, 李斌, 等. 预处理方法对玉米芯作为反硝化固体碳源的影响[J]. 环境科学, 2014(3): 987 − 994.
[21] 杨平, 刘青松, 石广辉, 等. 稻壳作为缓释碳源及载体的改性研究[J]. 生态科学, 2019, 38(2): 112 − 118.
[22] SINGH A, TUTEJA S, SINGH N, et al. Enhanced saccharification of rice straw and hull by microwave-alkali pretreatment and lignocellulolytic enzyme production[J]. Bioresource Technology, 2011, 102(2): 1773 − 1782. doi: 10.1016/j.biortech.2010.08.113
[23] 熊家晴, 孙建民, 郑于聪, 等. 植物固体碳源添加对人工湿地脱氮效果的影响[J]. 工业水处理, 2018, 38(9): 41 − 44.
[24] 向衡, 韩 芸, 刘琳, 等. 用于河道水脱氮补充碳源选择研究[J]. 水处理技术, 2013, 39(5): 64 − 68.
[25] 赵德华, 吕丽萍, 刘哲, 等. 湿地植物供碳功能与优化[J]. 生态学报, 2018, 38(16): 5961 − 5969.
[26] 丁怡, 唐海燕, 俞祺, 等. 利用植物碳源提高人工湿地脱氮效果的研究进展[J]. 工业水处理, 2020, 40(3): 7 − 10.
[27] 王琪飞. 不同填料和泥鳅对人工湿地净化能力的影响及机理[D]. 南京: 南京信息工程大学, 2017.
[28] 范鹏宇, 于鲁冀, 柏义生, 等. 缓释碳源生态基质对低碳氮比河水脱氮效果研究[J]. 环境科学学报, 2018, 38(1): 251 − 258.
[29] 成水平, 王月圆, 吴娟. 人工湿地研究现状与展望[J]. 湖泊科学, 2019, 31(6): 1489 − 1498.
[30] WANG W, DING Y, ULLMAN J L, et al. Nitrogen removal performance in planted and unplanted horizontal subsurface flow constructed wetlands treating different influent COD/N ratios[J]. Environmental Science and Pollution Research, 2016, 23(9): 9012 − 9018. doi: 10.1007/s11356-016-6115-5
[31] 晋凯迪, 于鲁冀, 陈涛, 等. 植物碳源调控对人工湿地脱氮效果的影响[J]. 环境工程学报, 2016, 10(10): 5611 − 5616.
[32] ZHANG C, YIN Q, WEN Y, et al. Enhanced nitrate removal in self-supplying carbon source constructed wetlands treating secondary effluent: the roles of plants and plant fermentation broth[J]. Ecological Engineering, 2016, 91: 310 − 316. doi: 10.1016/j.ecoleng.2016.02.039
[33] 钟胜强, 杨扬, 陶然, 等. 5种植物材料的水解释碳性能及反硝化效率[J]. 环境工程学报, 2014, 8(5): 1817 − 1824.
[34] 丁怡, 宋新山, 严登华. 补充碳源提取液对人工湿地脱氮作用的影响[J]. 环境科学学报, 2012, 32(7): 1646 − 1652.
[35] VOLOKITA M, ABELIOVICH A, SOARES M. et al. Denitrification of groundwater using cotton as energy source[J]. Water Science and Technology, 1996, 34(1−2): 379 − 385. doi: 10.2166/wst.1996.0394
[36] SALILING W J B, WESTERMAN P W, LOUORDOT M. Wood chips and wheat straw as alternative biofilter media for denitrification reactors treating aquaculture and other wastewaters with high nitrate concentrations[J]. Aquacultural Engineering, 2007, 37(3): 222 − 233. doi: 10.1016/j.aquaeng.2007.06.003
[37] ZHANG J M, FENG C P, HONG S Q, et al. Behavior of solid carbon sources for biological denitrification in groundwater remediation[J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2012, 65(9): 1696 − 1704. doi: 10.2166/wst.2012.070
[38] SAEED T, MUNTAHA S, RASHID M, et al. Industrial wastewater treatment in constructed wetlands packed with construction materials and agricultural by-products[J]. Cleaner Prod, 2018, 189: 442 − 453. doi: 10.1016/j.jclepro.2018.04.115
[39] ZHAO Y J, ZHANG H, XU C, et al. Efficiency of two-stage combinations of subsurface vertical down-flow and up-flow constructed wetland systems for treating variation in influent C/N ratios of domestic wastewater[J]. Ecological Engineering, 2011, 37(10): 1546 − 1554. doi: 10.1016/j.ecoleng.2011.06.005
[40] FOGLAR L, BRISKI F. Wastewater denitrification process—the influence of methanol and kinetic analysis[J]. Process Biochemistry, 2003, 39(1): 95 − 103. doi: 10.1016/S0032-9592(02)00318-7