[1] 张宝强. 矿物材料修复重金属污染的研究进展[J]. 中国资源综合利用, 2019, 37(7): 100 − 102. doi: 10.3969/j.issn.1008-9500.2019.07.032
[2] 鲁安怀. 环境矿物材料研究方向探讨[J]. 岩石矿物学杂志, 1997(16): 184 − 187.
[3] 何宏平, 郭九皋, 谢先德, 等. 蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究[J]. 矿物学报, 1999, 19(2): 231 − 235. doi: 10.3321/j.issn:1000-4734.1999.02.016
[4] 胡锐, 程飞飞, 岑对对, 等. 矿物功能材料的发展现状、问题及趋势[J]. 矿产综合利用, 2019(3): 1 − 6. doi: 10.3969/j.issn.1000-6532.2019.03.001
[5] ZHANG Z, WU J, LI B, et al. Removal of elemental mercury from simulated flue gas by ZSM-5 modified with Mn-Fe mixed oxides[J]. Chemical Engineering Journal, 2019, 375: 121946. doi: 10.1016/j.cej.2019.121946
[6] 孙青柯, 黄亚继, 秦翠娟, 等. 金属卤化盐改性沸石脱汞性能[J]. 环境工程学报, 2017, 11(5): 2900 − 2905.
[7] MUDASIR M, KARELIUS K, APRILITA N H, et al. Adsorption of mercury(Ⅱ) on dithizone-immobilized natural zeolite[J]. Journal of Environmental Chemical Engineering, 2016, 4: 1839 − 1849. doi: 10.1016/j.jece.2016.03.016
[8] SOMERSETA V, PETRIKB L, IWUOHA E. Alkaline hydrothermal conversion of fly ash precipitates into zeolites 3: The removal of mercury and lead ions from wastewater[J]. Journal of Environmental Management, 2008, 87: 125 − 131.
[9] QI H, XU W Q, WANG J, et al. Hg0 removal from flue gas over different zeolites modified by FeCl3[J]. Journal of Environmental Sciences, 2015, 28: 110 − 117. doi: 10.1016/j.jes.2014.05.050
[10] SUN H M, ZHAO S L, MA Y G, et al. Effective and regenerable Ag/4A zeolite nanocomposite for Hg0 removal from natural gas[J]. Journal of Alloys and Compounds, 2018, 762: 520 − 527. doi: 10.1016/j.jallcom.2018.05.222
[11] LIU H, ZHA Y C, ZHOU Y M, et al. Removal of gaseous elemental mercury by modified diatomite[J]. Science of the Total Environment, 2019, 652: 651 − 659. doi: 10.1016/j.scitotenv.2018.10.291
[12] 石莹莹, 张强华, 王海, 等. 凹土负载催化剂对模拟烟气中单质汞的吸附[J]. 环境工程学报, 2015, 9(2): 835 − 840. doi: 10.12030/j.cjee.20150254
[13] 张波, 仲兆平, 丁宽, 等. 凹凸棒土的吸附脱汞特性[J]. 中南大学学报(自然科学版), 2015, 46(2): 724 − 727.
[14] 陈浩, 黄亚继, 董璐, 等. 磁性凹凸棒土制备及其脱汞性能研究[J]. 燃料化学学报, 2018, 46(11): 1392 − 1400. doi: 10.3969/j.issn.0253-2409.2018.11.014
[15] 施冬雷, 乔仁静, 许琦. 酸改性凹凸棒土的制备及其脱汞性能[J]. 合成化学, 2015, 23(8): 720 − 724.
[16] ZHAO Y J, CHEN Y, LI M S, et al. Adsorption of Hg2+ from aqueous solution onto polyacrylamide/attapulgite[J]. Journal of Hazardous Materials, 2009, 171: 640 − 646. doi: 10.1016/j.jhazmat.2009.06.048
[17] CUI H, QIAN Y, LI Q, et al. Fast removal of Hg(Ⅱ) ions from aqueous solution by amine-modified attapulgite[J]. Applied Clay Science, 2013, 72: 84 − 90. doi: 10.1016/j.clay.2013.01.003
[18] LIU H, YANG J P, TIAN C, et al. Mercury removal from coal combustion flue gas by modified palygorskite adsorbents[J]. Applied Clay Science, 2017, 147: 36 − 43. doi: 10.1016/j.clay.2017.05.006
[19] SALEH T A, Mustafa TUZEN M, SARI A. Polyamide magnetic palygorskite for the simultaneous removal of Hg(Ⅱ) and methyl mercury; with factorial design analysis[J]. Journal of Environmental Management, 2018, 211: 323 − 333.
[20] CHEN Y, ZHAO Y J, ZHOU S Y, et al. Preparation and characterization of polyacrylamide/palygorskite[J]. Applied Clay Science, 2009, 46: 148 − 152. doi: 10.1016/j.clay.2009.07.018
[21] SHI D L, LU Y, TANG Z, et al. Removal of elemental mercury from simulated flue gas by cerium oxide modified attapulgite[J]. Korean Journal of Chemical Engineering, 2014, 31(8): 1405 − 1412. doi: 10.1007/s11814-014-0074-7
[22] 张玉枝. 巯基改性粘土矿物制备及固汞性能研究[D]. 北京: 北京化工大学, 2016.
[23] METIN A U, ALVER E. Fibrous polymer-grafted chitosan/clay composite beads as a carrier for immobilization of papain and its usability for mercury elimination[J]. Bioprocess and Biosystems Engineering, 2016, 39: 1137 − 1149. doi: 10.1007/s00449-016-1590-0
[24] ZHOU Z J, LIU X W, XU J, et al. Elemental mercury removal over a novel starch-modified MnOx/bentonite composite[J]. Fuel Processing Technology, 2019, 187: 16 − 20. doi: 10.1016/j.fuproc.2019.01.006
[25] SHAO H Z, LIU X W, ZHOU Z J, et al. Elemental mercury removal using a novel KI modified bentonite supported by starch sorbent[J]. Chemical Engineering Journal, 2016, 291: 306 − 316. doi: 10.1016/j.cej.2016.01.090
[26] KONG Y, WANG L, GE Y Y, et al. Lignin xanthate resin–bentonite clay composite as a highly effective and low-cost adsorbent for the removal of doxycycline hydrochloride antibiotic and mercury ions in water[J]. Journal of Hazardous Materials, 2019, 368: 33 − 41. doi: 10.1016/j.jhazmat.2019.01.026
[27] LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society, 1918, 40: 1361 − 1403. doi: 10.1021/ja02242a004
[28] LI M, WANG L, CHEN J Y, et al. Adsorption performance and mechanism of bentonite modified by ammonium bromide for gas-phase elemental mercury removal[J]. Journal of Fuel Chemistry and Technology, 2014, 42(10): 1266 − 1272. doi: 10.1016/S1872-5813(14)60049-9
[29] SELLAOUI L, SOETAREDJO F E, ISMADJI S, et al. Equilibrium study of single and binary adsorption of lead and mercury on bentonite-alginate composite: Experiments and application of two theoretical approaches[J]. Journal of Molecular Liquids, 2018, 253: 160 − 168. doi: 10.1016/j.molliq.2018.01.056
[30] ZHANG A C, SUN L S, XIANG J, et al. Removal of elemental mercury from coal combustion flue gas by bentonite-chitosan and their modifier[J]. Journal of Fuel Chemistry and Technology, 2009, 37(4): 489 − 495. doi: 10.1016/S1872-5813(10)60005-9
[31] 沈伯雄, 陈建宏, 蔡记, 等. KI 改性黏土脱除烟气中单质汞的研究[J]. 环境科学, 2014, 35(8): 2890 − 2896.
[32] 高洪亮, 王向宇, 周劲松, 等. 化学改性对膨润土吸附气态汞的影响[J]. 锅炉技术, 2008, 39(4): 73 − 76.
[33] 张安超, 孙路石, 向军, 等. 膨润土-壳聚糖及其改性吸附剂脱除燃烧烟气中Hg0的性能研究[J]. 燃料化学学报, 2009, 37(4): 490 − 495.
[34] 唐兴萍, 周雄, 张金洋, 等. TiO2/膨润土复合材料对Hg2+的吸附性能研究[J]. 环境科学, 2017, 38(2): 608 − 615.
[35] 邵海忠. 碘和淀粉共同改性膨润土脱除烟气中汞的实验研究[D].武汉: 华中科技大学, 2016.
[36] 白静利, 郝艳红, 王嘉伟, 等. 移动床吸附脱除火电厂烟气中汞的试验研究[J]. 洁净煤技术, 2018, 24(4): 114 − 119.
[37] 董华绘, 齐瑞石, 王晓焕, 等. 酸改性对膨润土结构及重金属吸附性能的影响[J]. 非金属矿, 2019, 42(2): 97 − 99. doi: 10.3969/j.issn.1000-8098.2019.02.027
[38] ŞAHAN T, EROL F, YILMAZ S. Mercury(Ⅱ) adsorption by a novel adsorbent mercapto-modified bentonite using ICP-OES and use of response surface methodology for optimization[J]. Microchemical Journal, 2018, 138: 360 − 368. doi: 10.1016/j.microc.2018.01.028
[39] RUMAYOR M, SVOBODA K, ŠVEHLA J, et al. Mercury removal from MSW incineration flue gas by mineral-based sorbents[J]. Waste Management, 2018, 73: 265 − 270. doi: 10.1016/j.wasman.2017.12.007
[40] YANG Y Q, CHEN H J. Study on the intercalation organic bentonite and its adsorption[J]. Journal of Xinyang Normal University, 2007, 20(3): 338 − 340.
[41] MA Y, WANG E D, SHAO H. Adsorption on Cu2+ of chitosan supported by bentonite[J]. Journal of Safety and Environment, 2005, 5(1): 41 − 43.
[42] LEE J Y, JU Y H, KEENER T C, et al. Development of cost-effective noncarbon sorbents for Hg0 removal from coal-fired power plants[J]. Environmental Science & Technology, 2006, 40(8): 2714 − 2720.
[43] LEE S S, LEE J Y, KEENER T C. The effect of methods of preparation on the performance of cupric chloride-impregnated sorbents for the removal of mercury from flue gases[J]. Fuel, 2009, 88(10): 2053 − 2056. doi: 10.1016/j.fuel.2009.01.027
[44] ZENG H C,JIN F, GUO J. Removal of elemental mercury from coal combustion flue gas by chloride-impregnated activated carbon[J]. Fuel, 2004, 83(1): 143 − 146. doi: 10.1016/S0016-2361(03)00235-7
[45] XU H M, QU Z, ZONG C X, et al. MnOx/graphene for the catalytic oxidation and adsorption of elemental mercury[J]. Environmental Science & Technology, 2015, 49: 6823 − 6830.
[46] MULLER K A, BRANDT C C, MATHEWS T, et al. Methylmercury sorption onto engineered materials[J]. Journal of Environmental Management, 2019, 245: 481 − 488.
[47] 何平, 李媛媛, 赵秋香. 改性膨润土材料对汞的吸附解吸性能研究[J]. 广东化工, 2017, 44(348): 54 − 57.
[48] FERNANDEZ-NAVA Y, ULMANU M, ANGER I, et a. Use of Granular Bentonite in the Removal of Mercury (Ⅱ), Cadmium (Ⅱ) and Lead (Ⅱ) from Aqueous Solutions[J]. Water Air Soil Pollution, 2011, 215: 239 − 249. doi: 10.1007/s11270-010-0474-1