[1] 王清静, 王加雷, 何伟, 等. 玉米秸秆厌氧消化水解动力学. 新能源进展, 2015, 3(1):1-6 Wang Qingjing, Wang Jialei, He Wei, et al. Kinetics of substrate hydrolysis for anaerobic digestion of corn stalk. Advances in New and Renewable Energy, 2015, 3(1):1-6(in Chinese)
[2] 孙辰, 刘荣厚, 曹卫星. 猪粪和水牛粪厌氧消化产甲烷潜力的研究. 中国沼气, 2014, 32(1):49-52 Sun Chen, Liu Ronghou, Cao Weixing. Methane production potential of pig manure and buffalo manure in Jiangxi Province. China Biogas, 2014, 32(1):49-52(in Chinese)
[3] Rincón B., Banks C. J., Heaven S. Biochemical methane potential of winter wheat (Triticum aestivum L.):Influence of growth stage and storage practice. Bioresource Technology, 2010, 101(21):8179-8184
[4] Gurung A., Van Ginkel S. W., Kang W. C., et al. Evaluation of marine biomass as a source of methane in batch tests:A lab-scale study. Energy, 2012, 43(1):396-401
[5] Angelidaki I., Alves M., Bolzonella D., et al. Defining the biomethane potential (BMP) of solid organic wastes and energy crops:A proposed protocol for batch assays. Water Science and Technology, 2009, 59(5):927-934
[6] Miao Hengfeng, Wang Shouquan, Zhao Mingxing, et al. Codigestion of Taihu blue algae with swine manure for biogas production. Energy Conversion and Management, 2014, 77:643-649
[7] Syaichurrozi I., Budiyono, Sumardiono S. Predicting kinetic model of biogas production and biodegradability organic materials:Biogas production from vinasse at variation of COD/N ratio. Bioresource Technology, 2013, 149:390-397
[8] Kaparaju P., Serrano M., Thomsen A. B., et al. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresource Technology, 2009, 100(9):2562-2568
[9] Chynoweth D. P., Turick C. E., Owens J. M., et al. Biochemical methane potential of biomass and waste feedstocks. Biomass and Bioenergy, 1993, 5(1):95-111
[10] Eaton A. D., Clesceri L. S., Rice E. W., et al. Standard Methods for the Examination of Water and Wastewater(21st ed.). Washington, DC:American Public Health Association, 2005
[11] Van Soest P. J. Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. Journal of the Association of Official Analytical Chemistry, 1963, 46:829-835
[12] 国家环境保护总局. 水和废水监测分析方法(第4版). 北京:中国环境科学出版社, 2002:270-281
[13] Budiyono, Widiasa I. N., Johari S., et al. The kinetic of biogas production rate from cattle manure in batch mode. International Journal of Chemical and Biological Engineering, 2010, 3(1):39-45
[14] Yusuf M. O. L., Ify N. L. The effect of waste paper on the kinetics of biogas yield from the co-digestion of cow dung and water hyacinth. Biomass and Bioenergy, 2011, 35(3):1345-1351
[15] 史金才, 廖新俤, 吴银宝. 4种畜禽粪便厌氧发酵产甲烷特性研究. 中国生态农业学报, 2010, 18(3):632-636 Shi Jincai, Liao Xindi, Wu Yinbao. Methane generation during anaerobic fermentation of four livestock slurries. Chinese Journal of Eco-Agriculture, 2010, 18(3):632-636(in Chinese)
[16] Hansen T. L., Schmidt J. E., Angelidaki I., et al. Method for determination of methane potentials of solid organic waste. Waste Management, 2004, 24(4):393-400
[17] Kafle G. K., Kim S. H. Anaerobic treatment of apple waste with swine manure for biogas production:Batch and continuous operation. Applied Energy, 2013, 103:61-72
[18] Li Yeqing, Zhang Ruihong, Liu Xiaoying, et al. Evaluating methane production from anaerobic mono-and co-digestion of kitchen waste, corn stover, and chicken manure. Energy & Fuels, 2013, 27(4):2085-2091
[19] Triolo J. M., Sommer S. G., Møller H. B., et al. A new algorithm to characterize biodegradability of biomass during anaerobic digestion:Influence of lignin concentration on methane production potential. Bioresource Technology, 2011, 102(20):9395-9402
[20] Hartmann H., Angelidaki I., Ahring B. K. Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration. Water Science and Technology, 2000, 41(3):145-153
[21] Li Yeqing, Zhang Ruihong, Liu Guangqing, et al. Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Bioresource Technology, 2013, 149:565-569
[22] Adiga S., Ramya R., Shankar B. B., et al. Kinetics of anaerobic digestion of water hyacinth, poultry litter, cow manure and primary sludge:A comparative study. International Proceedings of Chemical, Biological & Environment Management, 2012, 42:73-78
[23] 简树贤, 马文林, 李荣旗, 等. 牛粪最大甲烷生产能力及其发酵过程实验研究. 中国沼气, 2013, 31(2):21-25 Jian Shuxian, Ma Wenlin, Li Rongqi, et al. Study on maximum methane-producing capacity of dairy cow manure and the operation process. China Biogas, 2013, 31(2):21-25(in Chinese)
[24] 付善飞, 许晓晖, 师晓爽, 等. 酒糟沼气化利用的基础研发. 化工学报, 2014, 65(5):1913-1919 Fu Shanfei, Xu Xiaohui, Shi Xiaoshuang, et al. Basic research on utilization of stillage for biogas production. CIESC Journal, 2014, 65(5):1913-1919(in Chinese)
[25] Raposo F., Banks C. J., Siegert I., et al. Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochemistry, 2006, 41(6):1444-1450
[26] 白娜, 梅自力, 符征鸽, 等. 三种秸秆在不同温度下发酵产气特性研究. 中国沼气, 2011, 29(1):16-21 Bai Na, Mei Zili, Fu Zhengge, et al. The effects of temperature on anaerobic digestion of three different straws for biogas production. China Biogas, 2011, 29(1):16-21(in Chinese)
[27] 张美霞, 张盼月, 吴丹, 等. pH值对玉米秸秆厌氧消化产气的影响. 环境工程学报, 2015, 9(6):2997-3001 Zhang Meixia, Zhang Panyue, Wu Dan, et al. Effect of pH value on biogas production in anaerobic digestion of corn stovers. Chinese Journal of Environmental Engineering, 2015, 9(6):2997-3001(in Chinese)
[28] Lee D. H., Behera S. K., Kim J. W., et al. Methane production potential of leachate generated from Korean food waste recycling facilities:A lab-scale study. Waste Management, 2009, 29(2):876-882
[29] Kavitha S., Jayashree C., Adish Kumar S., et al. The enhancement of anaerobic biodegradability of waste activated sludge by surfactant mediated biological pretreatment. Bioresource Technology, 2014, 168:159-166
[30] Li Jianghao, Zhang Ruihong, Siddhu M. A. H., et al. Enhancing methane production of corn stover through a novel way:Sequent pretreatment of potassium hydroxide and steam explosion. Bioresource Technology, 2015, 181:345-350