牛粪和玉米秸秆厌氧消化产甲烷潜力及动力学

孙志岩, 张君枝, 刘翌晨, 吴岩, 刘殿威, 马文林. 牛粪和玉米秸秆厌氧消化产甲烷潜力及动力学[J]. 环境工程学报, 2016, 10(3): 1468-1474. doi: 10.12030/j.cjee.20160374
引用本文: 孙志岩, 张君枝, 刘翌晨, 吴岩, 刘殿威, 马文林. 牛粪和玉米秸秆厌氧消化产甲烷潜力及动力学[J]. 环境工程学报, 2016, 10(3): 1468-1474. doi: 10.12030/j.cjee.20160374
Sun Zhiyan, Zhang Junzhi, Liu Yichen, Wu Yan, Liu Dianwei, Ma Wenlin. Biochemical methane potential and kinetics of anaerobic digestion of cattle manure campared with corn stover[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1468-1474. doi: 10.12030/j.cjee.20160374
Citation: Sun Zhiyan, Zhang Junzhi, Liu Yichen, Wu Yan, Liu Dianwei, Ma Wenlin. Biochemical methane potential and kinetics of anaerobic digestion of cattle manure campared with corn stover[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1468-1474. doi: 10.12030/j.cjee.20160374

牛粪和玉米秸秆厌氧消化产甲烷潜力及动力学

  • 基金项目:

    北京应对气候变化研究和人才培养基地开放课题(PXM2014014210000037)

    北京市教委面上科技项目(KM201310016008)

    北京建筑大学2015年本科生科研训练计划项目(PXM2015014210000059)

    北京市科技计划项目(Z141100006014060)

  • 中图分类号: X713

Biochemical methane potential and kinetics of anaerobic digestion of cattle manure campared with corn stover

  • Fund Project:
  • 摘要: 为了评价牛粪和玉米秸秆的产甲烷潜力,研究其厌氧消化过程动力学方程,采用自制序批式厌氧发酵实验装置对某养殖场牛粪和秸秆的最大甲烷生产潜力及其发酵过程进行研究。通过实验研究,测得接种物、牛粪和玉米秸秆的累计甲烷产量分别为64.87、244.0和466.54 mL CH4/g VS。根据实测的产气量变化曲线,按照modified Gompertz equation模型进行方程拟合,牛粪组和玉米秸秆组拟合方程的相关性系数分别为0.983和0.991,表明运用modified Gompertz equation模型预测牛粪和玉米秸秆的产甲烷潜力方法可行。通过对产甲烷过程的动力学研究得到:接种物、牛粪和玉米秸秆的最大产甲烷潜力分别为66.07、213.93和458.57 mL CH4/g VS,与实测值的误差率分别为1.8%、12.3%和1.7%;牛粪和玉米秸秆的最大甲烷日产气率(Rm)和延滞期时间(λ)分别是13.14 mL CH4/(g VS·d)、30.76 mL CH4/(g VS·d)和0.35 d、0.71 d。综上,玉米秸秆厌氧消化的停滞期长,但总产气量和最大甲烷日产期率都比牛粪高。
  • 加载中
  • [1] 王清静, 王加雷, 何伟, 等. 玉米秸秆厌氧消化水解动力学. 新能源进展, 2015, 3(1):1-6 Wang Qingjing, Wang Jialei, He Wei, et al. Kinetics of substrate hydrolysis for anaerobic digestion of corn stalk. Advances in New and Renewable Energy, 2015, 3(1):1-6(in Chinese)
    [2] 孙辰, 刘荣厚, 曹卫星. 猪粪和水牛粪厌氧消化产甲烷潜力的研究. 中国沼气, 2014, 32(1):49-52 Sun Chen, Liu Ronghou, Cao Weixing. Methane production potential of pig manure and buffalo manure in Jiangxi Province. China Biogas, 2014, 32(1):49-52(in Chinese)
    [3] Rincón B., Banks C. J., Heaven S. Biochemical methane potential of winter wheat (Triticum aestivum L.):Influence of growth stage and storage practice. Bioresource Technology, 2010, 101(21):8179-8184
    [4] Gurung A., Van Ginkel S. W., Kang W. C., et al. Evaluation of marine biomass as a source of methane in batch tests:A lab-scale study. Energy, 2012, 43(1):396-401
    [5] Angelidaki I., Alves M., Bolzonella D., et al. Defining the biomethane potential (BMP) of solid organic wastes and energy crops:A proposed protocol for batch assays. Water Science and Technology, 2009, 59(5):927-934
    [6] Miao Hengfeng, Wang Shouquan, Zhao Mingxing, et al. Codigestion of Taihu blue algae with swine manure for biogas production. Energy Conversion and Management, 2014, 77:643-649
    [7] Syaichurrozi I., Budiyono, Sumardiono S. Predicting kinetic model of biogas production and biodegradability organic materials:Biogas production from vinasse at variation of COD/N ratio. Bioresource Technology, 2013, 149:390-397
    [8] Kaparaju P., Serrano M., Thomsen A. B., et al. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresource Technology, 2009, 100(9):2562-2568
    [9] Chynoweth D. P., Turick C. E., Owens J. M., et al. Biochemical methane potential of biomass and waste feedstocks. Biomass and Bioenergy, 1993, 5(1):95-111
    [10] Eaton A. D., Clesceri L. S., Rice E. W., et al. Standard Methods for the Examination of Water and Wastewater(21st ed.). Washington, DC:American Public Health Association, 2005
    [11] Van Soest P. J. Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. Journal of the Association of Official Analytical Chemistry, 1963, 46:829-835
    [12] 国家环境保护总局. 水和废水监测分析方法(第4版). 北京:中国环境科学出版社, 2002:270-281
    [13] Budiyono, Widiasa I. N., Johari S., et al. The kinetic of biogas production rate from cattle manure in batch mode. International Journal of Chemical and Biological Engineering, 2010, 3(1):39-45
    [14] Yusuf M. O. L., Ify N. L. The effect of waste paper on the kinetics of biogas yield from the co-digestion of cow dung and water hyacinth. Biomass and Bioenergy, 2011, 35(3):1345-1351
    [15] 史金才, 廖新俤, 吴银宝. 4种畜禽粪便厌氧发酵产甲烷特性研究. 中国生态农业学报, 2010, 18(3):632-636 Shi Jincai, Liao Xindi, Wu Yinbao. Methane generation during anaerobic fermentation of four livestock slurries. Chinese Journal of Eco-Agriculture, 2010, 18(3):632-636(in Chinese)
    [16] Hansen T. L., Schmidt J. E., Angelidaki I., et al. Method for determination of methane potentials of solid organic waste. Waste Management, 2004, 24(4):393-400
    [17] Kafle G. K., Kim S. H. Anaerobic treatment of apple waste with swine manure for biogas production:Batch and continuous operation. Applied Energy, 2013, 103:61-72
    [18] Li Yeqing, Zhang Ruihong, Liu Xiaoying, et al. Evaluating methane production from anaerobic mono-and co-digestion of kitchen waste, corn stover, and chicken manure. Energy & Fuels, 2013, 27(4):2085-2091
    [19] Triolo J. M., Sommer S. G., Møller H. B., et al. A new algorithm to characterize biodegradability of biomass during anaerobic digestion:Influence of lignin concentration on methane production potential. Bioresource Technology, 2011, 102(20):9395-9402
    [20] Hartmann H., Angelidaki I., Ahring B. K. Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration. Water Science and Technology, 2000, 41(3):145-153
    [21] Li Yeqing, Zhang Ruihong, Liu Guangqing, et al. Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Bioresource Technology, 2013, 149:565-569
    [22] Adiga S., Ramya R., Shankar B. B., et al. Kinetics of anaerobic digestion of water hyacinth, poultry litter, cow manure and primary sludge:A comparative study. International Proceedings of Chemical, Biological & Environment Management, 2012, 42:73-78
    [23] 简树贤, 马文林, 李荣旗, 等. 牛粪最大甲烷生产能力及其发酵过程实验研究. 中国沼气, 2013, 31(2):21-25 Jian Shuxian, Ma Wenlin, Li Rongqi, et al. Study on maximum methane-producing capacity of dairy cow manure and the operation process. China Biogas, 2013, 31(2):21-25(in Chinese)
    [24] 付善飞, 许晓晖, 师晓爽, 等. 酒糟沼气化利用的基础研发. 化工学报, 2014, 65(5):1913-1919 Fu Shanfei, Xu Xiaohui, Shi Xiaoshuang, et al. Basic research on utilization of stillage for biogas production. CIESC Journal, 2014, 65(5):1913-1919(in Chinese)
    [25] Raposo F., Banks C. J., Siegert I., et al. Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochemistry, 2006, 41(6):1444-1450
    [26] 白娜, 梅自力, 符征鸽, 等. 三种秸秆在不同温度下发酵产气特性研究. 中国沼气, 2011, 29(1):16-21 Bai Na, Mei Zili, Fu Zhengge, et al. The effects of temperature on anaerobic digestion of three different straws for biogas production. China Biogas, 2011, 29(1):16-21(in Chinese)
    [27] 张美霞, 张盼月, 吴丹, 等. pH值对玉米秸秆厌氧消化产气的影响. 环境工程学报, 2015, 9(6):2997-3001 Zhang Meixia, Zhang Panyue, Wu Dan, et al. Effect of pH value on biogas production in anaerobic digestion of corn stovers. Chinese Journal of Environmental Engineering, 2015, 9(6):2997-3001(in Chinese)
    [28] Lee D. H., Behera S. K., Kim J. W., et al. Methane production potential of leachate generated from Korean food waste recycling facilities:A lab-scale study. Waste Management, 2009, 29(2):876-882
    [29] Kavitha S., Jayashree C., Adish Kumar S., et al. The enhancement of anaerobic biodegradability of waste activated sludge by surfactant mediated biological pretreatment. Bioresource Technology, 2014, 168:159-166
    [30] Li Jianghao, Zhang Ruihong, Siddhu M. A. H., et al. Enhancing methane production of corn stover through a novel way:Sequent pretreatment of potassium hydroxide and steam explosion. Bioresource Technology, 2015, 181:345-350
  • 加载中
计量
  • 文章访问数:  2097
  • HTML全文浏览数:  1725
  • PDF下载数:  539
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-07-23
  • 刊出日期:  2016-03-18
孙志岩, 张君枝, 刘翌晨, 吴岩, 刘殿威, 马文林. 牛粪和玉米秸秆厌氧消化产甲烷潜力及动力学[J]. 环境工程学报, 2016, 10(3): 1468-1474. doi: 10.12030/j.cjee.20160374
引用本文: 孙志岩, 张君枝, 刘翌晨, 吴岩, 刘殿威, 马文林. 牛粪和玉米秸秆厌氧消化产甲烷潜力及动力学[J]. 环境工程学报, 2016, 10(3): 1468-1474. doi: 10.12030/j.cjee.20160374
Sun Zhiyan, Zhang Junzhi, Liu Yichen, Wu Yan, Liu Dianwei, Ma Wenlin. Biochemical methane potential and kinetics of anaerobic digestion of cattle manure campared with corn stover[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1468-1474. doi: 10.12030/j.cjee.20160374
Citation: Sun Zhiyan, Zhang Junzhi, Liu Yichen, Wu Yan, Liu Dianwei, Ma Wenlin. Biochemical methane potential and kinetics of anaerobic digestion of cattle manure campared with corn stover[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1468-1474. doi: 10.12030/j.cjee.20160374

牛粪和玉米秸秆厌氧消化产甲烷潜力及动力学

  • 1. 北京建筑大学北京应对气候变化研究和人才培养基地, 北京 100044
基金项目:

北京应对气候变化研究和人才培养基地开放课题(PXM2014014210000037)

北京市教委面上科技项目(KM201310016008)

北京建筑大学2015年本科生科研训练计划项目(PXM2015014210000059)

北京市科技计划项目(Z141100006014060)

摘要: 为了评价牛粪和玉米秸秆的产甲烷潜力,研究其厌氧消化过程动力学方程,采用自制序批式厌氧发酵实验装置对某养殖场牛粪和秸秆的最大甲烷生产潜力及其发酵过程进行研究。通过实验研究,测得接种物、牛粪和玉米秸秆的累计甲烷产量分别为64.87、244.0和466.54 mL CH4/g VS。根据实测的产气量变化曲线,按照modified Gompertz equation模型进行方程拟合,牛粪组和玉米秸秆组拟合方程的相关性系数分别为0.983和0.991,表明运用modified Gompertz equation模型预测牛粪和玉米秸秆的产甲烷潜力方法可行。通过对产甲烷过程的动力学研究得到:接种物、牛粪和玉米秸秆的最大产甲烷潜力分别为66.07、213.93和458.57 mL CH4/g VS,与实测值的误差率分别为1.8%、12.3%和1.7%;牛粪和玉米秸秆的最大甲烷日产气率(Rm)和延滞期时间(λ)分别是13.14 mL CH4/(g VS·d)、30.76 mL CH4/(g VS·d)和0.35 d、0.71 d。综上,玉米秸秆厌氧消化的停滞期长,但总产气量和最大甲烷日产期率都比牛粪高。

English Abstract

参考文献 (30)

返回顶部

目录

/

返回文章
返回