[1] |
Wevar Oller A. L., Agostini E., Talano M. A., et al. Overexpression of a basic peroxidase in transgenic tomato (Lycopersicon esculentum Mill. cv. Pera) hairy roots increases phytoremediation of phenol. Plant Science, 2005, 169(6): 1102-1111
|
[2] |
Cooper V. A., Nicell J. A. Removal of phenols from a foundry wastewater using horseradish peroxidase. Water Research, 1996, 30(4): 954-964
|
[3] |
Kargi F., Eker S., Uygur A. Biological treatment of synthetic wastewater containing 2, 4-dichlorophenol (DCP) in an activated sludge unit. Journal of Environmental Management, 2005, 76(3): 191-196
|
[4] |
Dąbrowski A., Podkościelny P., Hubicki Z., et al. Adsorption of phenolic compounds by activated carbon-a critical review. Chemosphere, 2005, 58(8): 1049-1070
|
[5] |
Czaplicka M. Photo-degradation of chlorophenols in the aqueous solution. Journal of Hazardous Materials, 2006, 134(1-3): 45-59
|
[6] |
Sumithran S., Sono M., Raner G.M., et al. Single turnover studies of oxidative halophenol dehalogenation by horseradish peroxidase reveal a mechanism involving two consecutive one electron steps: Toward a functional halophenol bioremediation catalyst. Journal of Inorganic Biochemistry, 2012, 117: 316-321
|
[7] |
Song H. Y., Liu J. Z., Xiong Y. H., et al. Treatment of aqueous chlorophenol by phthalic anhydride-modified horseradish peroxidase. Journal of Molecular Catalysis B: Enzymatic, 2003, 22(1-3): 37-44
|
[8] |
Akhtar S., Husain Q. Potential applications of immobilized bitter gourd (Momordica charantia) peroxidase in the removal of phenols from polluted water. Chemosphere, 2006, 65(7): 1228-1235
|
[9] |
Bornscheuer U. T. Immobilzing enzymes: how to create more suitable biocatalysts. Angewandte Chemie International Edition, 2003, 42(29): 3336-3337
|
[10] |
Fowler J. D., Allen M. J., Tung V. C., et al. Practical chemical sensors from chemically derived graphene. ACS Nano, 2009, 3(2): 301-306
|
[11] |
Zhang J. L., Zhang F., Yang H. J., et al. Graphene oxide as a matrix for enzyme immobilization. Langmuir, 2010, 26(9): 6083-6085
|
[12] |
Chang Q., Zhu L., Jiang G. D., et al. Sensitive fluorescent probes for determination of hydrogen peroxide and glucose based on enzyme immobilized magnetite/silica nanoparticles. Analytical Bioanalytical Chemistry, 2009, 395(7): 2377-2385
|
[13] |
Chen C. M., Yang Q. H., Yang Y. G., et al. Self-assembled free-standing graphite oxide membrane. Advanced Materials, 2009, 21(29): 3007-3011
|
[14] |
Nicell J. A., Wright H. A model of peroxidase activity with inhibition by hydrogen peroxide. Enzyme and Microbial Technology, 1997, 21(4): 302-310
|
[15] |
Bai L. Z., Zhao D. L., Xu Y., et al. Inductive heating property of graphene oxide-Fe3O4 nanoparticles hybrid in an AC magnetic field for localized hyperthermia. Mater Lett, 2012, 68: 399-401
|
[16] |
Zhang F., Zheng B., Zhang J. L., et al. Horseradish peroxidase immobilized on graphene oxide: Physical properties and applications in phenolic compound removal. The Journal of Physical Chemistry C, 2010, 114(18): 8469-8473
|
[17] |
Huang Q., Huang Q. G., Pinto R. A., et al. Inactivation of horseradish peroxidase by phenoxyl radical attack. Journal of the American Chemical Society, 2005, 127(5): 1431-1437
|
[18] |
Wu J., Taylor K. E., Bewtra J. K., et al. Optimization of the reaction conditions for enzymatic removal of phenol from wastewater in the presence of polyethylene glycol. Water Research, 1993, 27(12): 1701-1706
|