氧化石墨烯/Fe3O4磁性纳米材料固定辣根过氧化物酶及其降解酚类物质

常青, 黄佳, 江国栋, 唐和清, 德力黑. 氧化石墨烯/Fe3O4磁性纳米材料固定辣根过氧化物酶及其降解酚类物质[J]. 环境工程学报, 2014, 8(5): 1812-1816.
引用本文: 常青, 黄佳, 江国栋, 唐和清, 德力黑. 氧化石墨烯/Fe3O4磁性纳米材料固定辣根过氧化物酶及其降解酚类物质[J]. 环境工程学报, 2014, 8(5): 1812-1816.
Chang Qing, Huang Jia, Jiang Guodong, Tang Heqing, De Lihei. Immobilization of horseradish peroxidase onto graphene oxide/Fe3O4 magnetic nanoparticles and its use for degradation of phenols[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1812-1816.
Citation: Chang Qing, Huang Jia, Jiang Guodong, Tang Heqing, De Lihei. Immobilization of horseradish peroxidase onto graphene oxide/Fe3O4 magnetic nanoparticles and its use for degradation of phenols[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1812-1816.

氧化石墨烯/Fe3O4磁性纳米材料固定辣根过氧化物酶及其降解酚类物质

  • 基金项目:

    国家自然科学基金资助项目(21077037,21107143)

    中央高校基本科研业务费专项资金项目(CZQ11019)

  • 中图分类号: X703

Immobilization of horseradish peroxidase onto graphene oxide/Fe3O4 magnetic nanoparticles and its use for degradation of phenols

  • Fund Project:
  • 摘要: 以原位沉淀法制备的氧化石墨烯/Fe3O4磁性纳米复合颗粒为固定化载体,1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐为交联剂,成功固载了辣根过氧化物酶。探讨了固定化条件对辣根过氧化酶活性的影响以及固定化酶的理化性质,实验结果表明,固定化最佳pH为6、温度为30℃、时间为11 h、交联剂浓度为1 mg/L。与游离酶相比,固定化酶具有良好的pH稳定性和热稳定性。最后将固定化酶用于降解水中的苯酚和2,4-二氯酚,并考察了固定化酶的重复利用性。
  • 加载中
  • [1] Wevar Oller A. L., Agostini E., Talano M. A., et al. Overexpression of a basic peroxidase in transgenic tomato (Lycopersicon esculentum Mill. cv. Pera) hairy roots increases phytoremediation of phenol. Plant Science, 2005, 169(6): 1102-1111
    [2] Cooper V. A., Nicell J. A. Removal of phenols from a foundry wastewater using horseradish peroxidase. Water Research, 1996, 30(4): 954-964
    [3] Kargi F., Eker S., Uygur A. Biological treatment of synthetic wastewater containing 2, 4-dichlorophenol (DCP) in an activated sludge unit. Journal of Environmental Management, 2005, 76(3): 191-196
    [4] Dąbrowski A., Podkościelny P., Hubicki Z., et al. Adsorption of phenolic compounds by activated carbon-a critical review. Chemosphere, 2005, 58(8): 1049-1070
    [5] Czaplicka M. Photo-degradation of chlorophenols in the aqueous solution. Journal of Hazardous Materials, 2006, 134(1-3): 45-59
    [6] Sumithran S., Sono M., Raner G.M., et al. Single turnover studies of oxidative halophenol dehalogenation by horseradish peroxidase reveal a mechanism involving two consecutive one electron steps: Toward a functional halophenol bioremediation catalyst. Journal of Inorganic Biochemistry, 2012, 117: 316-321
    [7] Song H. Y., Liu J. Z., Xiong Y. H., et al. Treatment of aqueous chlorophenol by phthalic anhydride-modified horseradish peroxidase. Journal of Molecular Catalysis B: Enzymatic, 2003, 22(1-3): 37-44
    [8] Akhtar S., Husain Q. Potential applications of immobilized bitter gourd (Momordica charantia) peroxidase in the removal of phenols from polluted water. Chemosphere, 2006, 65(7): 1228-1235
    [9] Bornscheuer U. T. Immobilzing enzymes: how to create more suitable biocatalysts. Angewandte Chemie International Edition, 2003, 42(29): 3336-3337
    [10] Fowler J. D., Allen M. J., Tung V. C., et al. Practical chemical sensors from chemically derived graphene. ACS Nano, 2009, 3(2): 301-306
    [11] Zhang J. L., Zhang F., Yang H. J., et al. Graphene oxide as a matrix for enzyme immobilization. Langmuir, 2010, 26(9): 6083-6085
    [12] Chang Q., Zhu L., Jiang G. D., et al. Sensitive fluorescent probes for determination of hydrogen peroxide and glucose based on enzyme immobilized magnetite/silica nanoparticles. Analytical Bioanalytical Chemistry, 2009, 395(7): 2377-2385
    [13] Chen C. M., Yang Q. H., Yang Y. G., et al. Self-assembled free-standing graphite oxide membrane. Advanced Materials, 2009, 21(29): 3007-3011
    [14] Nicell J. A., Wright H. A model of peroxidase activity with inhibition by hydrogen peroxide. Enzyme and Microbial Technology, 1997, 21(4): 302-310
    [15] Bai L. Z., Zhao D. L., Xu Y., et al. Inductive heating property of graphene oxide-Fe3O4 nanoparticles hybrid in an AC magnetic field for localized hyperthermia. Mater Lett, 2012, 68: 399-401
    [16] Zhang F., Zheng B., Zhang J. L., et al. Horseradish peroxidase immobilized on graphene oxide: Physical properties and applications in phenolic compound removal. The Journal of Physical Chemistry C, 2010, 114(18): 8469-8473
    [17] Huang Q., Huang Q. G., Pinto R. A., et al. Inactivation of horseradish peroxidase by phenoxyl radical attack. Journal of the American Chemical Society, 2005, 127(5): 1431-1437
    [18] Wu J., Taylor K. E., Bewtra J. K., et al. Optimization of the reaction conditions for enzymatic removal of phenol from wastewater in the presence of polyethylene glycol. Water Research, 1993, 27(12): 1701-1706
  • 加载中
计量
  • 文章访问数:  1849
  • HTML全文浏览数:  1056
  • PDF下载数:  816
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-12-19
  • 刊出日期:  2014-05-06
常青, 黄佳, 江国栋, 唐和清, 德力黑. 氧化石墨烯/Fe3O4磁性纳米材料固定辣根过氧化物酶及其降解酚类物质[J]. 环境工程学报, 2014, 8(5): 1812-1816.
引用本文: 常青, 黄佳, 江国栋, 唐和清, 德力黑. 氧化石墨烯/Fe3O4磁性纳米材料固定辣根过氧化物酶及其降解酚类物质[J]. 环境工程学报, 2014, 8(5): 1812-1816.
Chang Qing, Huang Jia, Jiang Guodong, Tang Heqing, De Lihei. Immobilization of horseradish peroxidase onto graphene oxide/Fe3O4 magnetic nanoparticles and its use for degradation of phenols[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1812-1816.
Citation: Chang Qing, Huang Jia, Jiang Guodong, Tang Heqing, De Lihei. Immobilization of horseradish peroxidase onto graphene oxide/Fe3O4 magnetic nanoparticles and its use for degradation of phenols[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1812-1816.

氧化石墨烯/Fe3O4磁性纳米材料固定辣根过氧化物酶及其降解酚类物质

  • 1. 中南民族大学化学与材料科学学院, 武汉 430074
  • 2. 湖北工业大学化学与化工学院, 武汉 430068
基金项目:

国家自然科学基金资助项目(21077037,21107143)

中央高校基本科研业务费专项资金项目(CZQ11019)

摘要: 以原位沉淀法制备的氧化石墨烯/Fe3O4磁性纳米复合颗粒为固定化载体,1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐为交联剂,成功固载了辣根过氧化物酶。探讨了固定化条件对辣根过氧化酶活性的影响以及固定化酶的理化性质,实验结果表明,固定化最佳pH为6、温度为30℃、时间为11 h、交联剂浓度为1 mg/L。与游离酶相比,固定化酶具有良好的pH稳定性和热稳定性。最后将固定化酶用于降解水中的苯酚和2,4-二氯酚,并考察了固定化酶的重复利用性。

English Abstract

参考文献 (18)

返回顶部

目录

/

返回文章
返回