Zhao F J, McGrath S P, Meharg A A. Arsenic as a food chain contaminant:Mechanisms of plant uptake and metabolism and mitigation strategies[J]. Annual Review of Plant Biology, 2010, 61:535-559
Wenzel W W, Brandstetter A, Wutte H, et al. Arsenic in field-collected soil solutions and extracts of contaminated soils and its implication to soil standards[J]. Journal of Plant Nutrition and Soil Science, 2002, 165(2):221
Zhao F J, Ma Y B, Zhu Y G, et al. Soil contamination in China:Current status and mitigation strategies[J]. Environmental Science&Technology, 2015, 49(2):750-759
中华人民共和国国务院.土壤污染防治行动计划[R].北京:中华人民共和国国务院, 2016
Zhao F J, Ma J F, Meharg A A, et al. Arsenic uptake and metabolism in plants[J]. New Phytologist, 2009, 181(4):777-794
Nordstrom D K. Worldwide occurrences of arsenic in ground water[J]. Science, 2002, 296(5576):2143-2145
Lima L W, Pilon-Smits E A H, Schiavon M. Mechanisms of selenium hyperaccumulation in plants:A survey of molecular, biochemical and ecological cues[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2018, 1862(11):2343-2353
Paul T, Saha N C. Environmental arsenic and selenium contamination and approaches towards its bioremediation through the exploration of microbial adaptations:A review[J]. Pedosphere, 2019, 29(5):554-568
El-Ramady H R, Domokos-Szabolcsy É, Abdalla N A, et al. Selenium and nano-selenium in agroecosystems[J]. Environmental Chemistry Letters, 2014, 12(4):495-510
Wang M K, Cui Z W, Xue M Y, et al. Assessing the uptake of selenium from naturally enriched soils by maize ( Zea mays L.) using diffusive gradients in thin-films technique (DGT) and traditional extractions[J]. The Science of the Total Environment, 2019, 689:1-9
华明,黄顺生,廖启林,等.粉煤灰堆场附近农田土壤硒环境污染评价[J].土壤, 2009, 41(6):880-885 Hua M, Huang S S, Liao Q L, et al. Assessment of selenium environmental pollution in agricultural soil in vicinity of coal fly ash reservoir[J]. Soils, 2009, 41(6):880-885(in Chinese)
Gustafsson J P. Vanadium geochemistry in the biogeosphere-speciation, solid-solution interactions, and ecotoxicity[J]. Applied Geochemistry, 2019, 102:1-25
Larsson M A, Baken S, Gustafsson J P, et al. Vanadium bioavailability and toxicity to soil microorganisms and plants[J]. Environmental Toxicology and Chemistry, 2013, 32(10):2266-2273
Imtiaz M, Rizwan M S, Xiong S L, et al. Vanadium, recent advancements and research prospects:A review[J]. Environment International, 2015, 80:79-88
Cao X L, Diao M H, Zhang B G, et al. Spatial distribution of vanadium and microbial community responses in surface soil of Panzhihua mining and smelting area, China[J]. Chemosphere, 2017, 183:9-17
Lamb D T, Kader M, Wang L, et al. Pore-water carbonate and phosphate as predictors of arsenate toxicity in soil[J]. Environmental Science&Technology, 2016, 50(23):13062-13069
Borgmann U, Couillard Y, Doyle P, et al. Toxicity of sixty-three metals and metalloids to Hyalella azteca at two levels of water hardness[J]. Environmental Toxicology and Chemistry, 2005, 24(3):641-652
Zou Q, Li D A, Jiang J G, et al. Geochemical simulation of the stabilization process of vanadium-contaminated soil remediated with calcium oxide and ferrous sulfate[J]. Ecotoxicology and Environmental Safety, 2019, 174:498-505
Aihemaiti A, Gao Y C, Meng Y, et al. Review of plant-vanadium physiological interactions, bioaccumulation, and bioremediation of vanadium-contaminated sites[J]. The Science of the Total Environment, 2020, 712:135637
Siddiqui M H, Alamri S, Nasir Khan M, et al. Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress[J]. Journal of Hazardous Materials, 2020, 398:122882
Kinraide T B. Three mechanisms for the calcium alleviation of mineral toxicities[J]. Plant Physiology, 1998, 118(2):513-520
Kinraide T B, Wang P. The surface charge density of plant cell membranes (Sigma):An attempt to resolve conflicting values for intrinsic Sigma[J]. Journal of Experimental Botany, 2010, 61(9):2507-2518
Wang Y M, Kinraide T B, Wang P, et al. Modeling rhizotoxicity and uptake of Zn and Co singly and in binary mixture in wheat in terms of the cell membrane surface electrical potential[J]. Environmental Science&Technology, 2013, 47(6):2831-2838
Wang P, Zhou D M, Kinraide T B, et al. Cell membrane surface potential (psi0) plays a dominant role in the phytotoxicity of copper and arsenate[J]. Plant Physiology, 2008, 148(4):2134-2143
Kinraide T. The controlling influence of cell-surface electrical potential on the uptake and toxicity of selenate (SeO2-4)[J]. Physiologia Plantarum, 2003, 117:64-71
Wagatsuma T, Akiba R. Low surface negativity of root protoplasts from aluminum-tolerant plant species[J]. Soil Science and Plant Nutrition, 1989, 35(3):443-452
Wang P, Kopittke P M, de Schamphelaere K A C, et al. Evaluation of an electrostatic toxicity model for predicting Ni2+ toxicity to barley root elongation in hydroponic cultures and in soils[J]. The New Phytologist, 2011, 192(2):414-427
Kopittke P M, Kinraide T B, Wang P, et al. Alleviation of Cu and Pb rhizotoxicities in cowpea ( Vigna unguiculata ) as related to ion activities at root-cell plasma membrane surface[J]. Environmental Science&Technology, 2011, 45(11):4966-4973
Kopittke P M, Blamey F P, Wang P, et al. Calculated activity of Mn2+ at the outer surface of the root cell plasma membrane governs Mn nutrition of cowpea seedlings[J]. Journal of Experimental Botany, 2011, 62(11):3993-4001
Wang P, Kinraide T B, Zhou D M, et al. Plasma membrane surface potential:Dual effects upon ion uptake and toxicity[J]. Plant Physiology, 2011, 155(2):808-820
Gong B, He E K, Qiu H, et al. The cation competition and electrostatic theory are equally valid in quantifying the toxicity of trivalent rare earth ions (Y3+ and Ce3+) to Triticum aestivum [J]. Environmental Pollution, 2019, 250:456-463
Kinraide T B. Ion fluxes considered in terms of membrane-surface electrical potentials[J]. Functional Plant Biology, 2001, 28(7):607
Oorts K, Ghesquiere U, Swinnen K, et al. Soil properties affecting the toxicity of CuC12 and NiC12 for soil microbial processes in freshly spiked soils[J]. Environmental Toxicology and Chemistry, 2006, 25(3):836-844
International Organization for Standardization (ISO). Soil Quality:Determination of the effects of pollutants on soil flora:Part 1:Method for the measurement of inhibition of root growth ISO 11269-1:2012[S]. Geneva:ISO, 2012
Kinraide T B. Use of a Gouy-Chapman-stern model for membrane-surface electrical potential to interpret some features of mineral rhizotoxicity[J]. Plant Physiology, 1994, 106(4):1583-1592
Kopittke P M, Wang P, Menzies N W, et al. A web-accessible computer program for calculating electrical potentials and ion activities at cell-membrane surfaces[J]. Plant and Soil, 2014, 375(1-2):35-46
Le T T Y, Peijnenburg W J G M. Modelling toxicity of metal mixtures:A generalisation of new advanced methods, considering potential application to terrestrial ecosystems[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(7):409-454
Adams W J, Cardwell A S, DeForest D K, et al. Aluminum bioavailability and toxicity to aquatic organisms:Introduction to the special section[J]. Environmental Toxicology and Chemistry, 2018, 37(1):34-35
Parker D, Pedler J. Reevaluating the free-ion activity model of trace metal availability to higher plants[J]. Plant and Soil, 1997, 196:107-112
Pedler J F, Kinraide T B, Parker D R. Zinc rhizotoxicity in wheat and radish is alleviated by micromolar levels of magnesium and potassium in solution culture[J]. Plant and Soil, 2004, 259(1/2):191-199
Lock K, Criel P, de Schamphelaere K A, et al. Influence of calcium, magnesium, sodium, potassium and pH on copper toxicity to barley ( Hordeum vulgare )[J]. Ecotoxicology and Environmental Safety, 2007, 68(2):299-304
Wang X D, Li B, Ma Y B, et al. Development of a biotic ligand model for acute zinc toxicity to barley root elongation[J]. Ecotoxicology and Environmental Safety, 2010, 73(6):1272-1278
Chen B C, Ho P C, Juang K W. Alleviation effects of magnesium on copper toxicity and accumulation in grapevine roots evaluated with biotic ligand models[J]. Ecotoxicology, 2013, 22(1):174-183
Deleebeeck N M, de Schamphelaere K A, Heijerick D G, et al. The acute toxicity of nickel to Daphnia magna :Predictive capacity of bioavailability models in artificial and natural waters[J]. Ecotoxicology and Environmental Safety, 2008, 70(1):67-78
Kozlova T, Wood C M, McGeer J C. The effect of water chemistry on the acute toxicity of nickel to the cladoceran Daphnia pulex and the development of a biotic ligand model[J]. Aquatic Toxicology, 2009, 91(3):221-228
de Schamphelaere K A C, Janssen C R. A biotic ligand model predicting acute copper toxicity for Daphnia magna :The effects of calcium, magnesium, sodium, potassium, and Ph[J]. Environmental Science&Technology, 2002, 36(1):48-54
Thor K. Calcium:Nutrient and messenger[J]. Frontiers in Plant Science, 2019, 10:440
Siddiqui M H, Al-Whaibi M H, Sakran A M, et al. Calcium-induced amelioration of boron toxicity in radish[J]. Journal of Plant Growth Regulation, 2013, 32(1):61-71
Longchamp M, Angeli N, Castrec-Rouelle M. Effects on the accumulation of calcium, magnesium, iron, manganese, copper and zinc of adding the two inorganic forms of selenium to solution cultures of Zea mays [J]. Plant Physiology and Biochemistry, 2016, 98:128-137