共存阳离子对砷、硒和钒毒性效应的影响及预测模型研究
Development of Predictive Models for Quantifying Potential Impacts of Coexisting Cations on Toxicity of As, Se, and V
-
摘要: 为探明并量化共存阳离子存在下含氧阴离子型金属在生物体中的毒性效应,以模式植物小麦(Triticum aestivum L.)为研究对象,通过单一变量控制实验,探究了4种阳离子(Ca2+、Mg2+、Na+和K+)对3种典型含氧阴离子型金属(AsO3-4、SeO2-3和VO3-4)毒性的影响,并构建了静电作用模型来预测和评估As、Se和V的生态毒性效应与风险。结果表明,Ca2+对As、Se和V毒性的影响呈现出3种不同的趋势:在相同设计浓度范围内Ca2+的增加显著引起了As毒性的减弱(Adj.R2=0.76,P<0.05)、V毒性的加剧(Adj.R2=0.81,P<0.05),而对Se毒性却没有显著影响。当Mg2+从0.20 mmol·L-1增加到2.73 mmol·L-1时,Se主导形态的半数有效活度值(EC50{HSeO-3})从40.40 μmol·L-1显著下降为27.98 μmol·L-1,即Se毒性增强到原来的1.44倍(Adj.R2=0.79,P<0.05)。静电作用理论能够很好地解释Ca2+(或Mg2+)在显著增强V (或Se)毒性中发挥的作用,将这种静电作用影响纳入考虑成功构建了可以定量预测V (Adj.R2=0.88)和Se (Adj.R2=0.95)毒性的静电作用模型。研究结果弥补了目前含氧阴离子型金属生态毒性研究的不足,为含氧阴离子型金属的土壤污染生态风险评估提供了指导与参考。Abstract: To quantify the toxicity of anionic metal(loid)s in the presence of potentially competing cations, we designed a univariate experiment to investigate the influence of various cations (varying Ca, Mg, Na and K levels) on the toxicity of single anionic metal(loid)s (arsenate, selenite, and vanadate) and developed a mechanistic model to predict and evaluate the toxicity and risk of individual As, Se and V. Standard root elongation tests with wheat (Triticum aestivum L.) were performed. Results showed that the toxic effects of Ca2+ on As, Se and V presented three different trends. At the same concentration range, the addition of Ca2+ significantly reduced the toxicity of As (Adj. R2=0.76, P<0.05), but aggravated the toxicity of V (Adj. R2=0.81, P<0.05). There was no significant effect of Ca2+ on the toxicity of Se. Increasing {Mg2+} from 0.20 mmol·L-1 to 2.73 mmol·L-1, the corresponding EC50{HSeO-3} decreased significantly from 40.40 μmol·L-1 to 27.98 μmol·L-1, that is, the toxicity of Se increased by 1.44 times (Adj. R2=0.79, P<0.05). The electrostatic theories well explained the effects of Ca2+ (or Mg2+) on the significant enhancement of V (or Se) toxicity. By taking possible cation interactions into account, the electrostatic toxicity models succeeded in predicting the toxicity of Se (Adj. R2=0.95) and V (Adj. R2=0.88), respectively. Our findings filled the knowledge gaps on the ecological toxicity of anionic metal(loid)s, and provided guidelines for the ecological risk assessment of anionic metal(loid)s in the soil ecosystem.
-
Key words:
- anionic metal(loid)s /
- wheat /
- acute toxicity /
- coexisting cations /
- electrostatic toxicity model
-
-
Zhao F J, McGrath S P, Meharg A A. Arsenic as a food chain contaminant:Mechanisms of plant uptake and metabolism and mitigation strategies[J]. Annual Review of Plant Biology, 2010, 61:535-559 Wenzel W W, Brandstetter A, Wutte H, et al. Arsenic in field-collected soil solutions and extracts of contaminated soils and its implication to soil standards[J]. Journal of Plant Nutrition and Soil Science, 2002, 165(2):221 Zhao F J, Ma Y B, Zhu Y G, et al. Soil contamination in China:Current status and mitigation strategies[J]. Environmental Science&Technology, 2015, 49(2):750-759 中华人民共和国国务院.土壤污染防治行动计划[R].北京:中华人民共和国国务院, 2016 Zhao F J, Ma J F, Meharg A A, et al. Arsenic uptake and metabolism in plants[J]. New Phytologist, 2009, 181(4):777-794 Nordstrom D K. Worldwide occurrences of arsenic in ground water[J]. Science, 2002, 296(5576):2143-2145 Lima L W, Pilon-Smits E A H, Schiavon M. Mechanisms of selenium hyperaccumulation in plants:A survey of molecular, biochemical and ecological cues[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2018, 1862(11):2343-2353 Paul T, Saha N C. Environmental arsenic and selenium contamination and approaches towards its bioremediation through the exploration of microbial adaptations:A review[J]. Pedosphere, 2019, 29(5):554-568 El-Ramady H R, Domokos-Szabolcsy É, Abdalla N A, et al. Selenium and nano-selenium in agroecosystems[J]. Environmental Chemistry Letters, 2014, 12(4):495-510 Wang M K, Cui Z W, Xue M Y, et al. Assessing the uptake of selenium from naturally enriched soils by maize ( Zea mays L.) using diffusive gradients in thin-films technique (DGT) and traditional extractions[J]. The Science of the Total Environment, 2019, 689:1-9 华明,黄顺生,廖启林,等.粉煤灰堆场附近农田土壤硒环境污染评价[J].土壤, 2009, 41(6):880-885 Hua M, Huang S S, Liao Q L, et al. Assessment of selenium environmental pollution in agricultural soil in vicinity of coal fly ash reservoir[J]. Soils, 2009, 41(6):880-885(in Chinese)
Gustafsson J P. Vanadium geochemistry in the biogeosphere-speciation, solid-solution interactions, and ecotoxicity[J]. Applied Geochemistry, 2019, 102:1-25 Larsson M A, Baken S, Gustafsson J P, et al. Vanadium bioavailability and toxicity to soil microorganisms and plants[J]. Environmental Toxicology and Chemistry, 2013, 32(10):2266-2273 Imtiaz M, Rizwan M S, Xiong S L, et al. Vanadium, recent advancements and research prospects:A review[J]. Environment International, 2015, 80:79-88 Cao X L, Diao M H, Zhang B G, et al. Spatial distribution of vanadium and microbial community responses in surface soil of Panzhihua mining and smelting area, China[J]. Chemosphere, 2017, 183:9-17 Lamb D T, Kader M, Wang L, et al. Pore-water carbonate and phosphate as predictors of arsenate toxicity in soil[J]. Environmental Science&Technology, 2016, 50(23):13062-13069 Borgmann U, Couillard Y, Doyle P, et al. Toxicity of sixty-three metals and metalloids to Hyalella azteca at two levels of water hardness[J]. Environmental Toxicology and Chemistry, 2005, 24(3):641-652 Zou Q, Li D A, Jiang J G, et al. Geochemical simulation of the stabilization process of vanadium-contaminated soil remediated with calcium oxide and ferrous sulfate[J]. Ecotoxicology and Environmental Safety, 2019, 174:498-505 Aihemaiti A, Gao Y C, Meng Y, et al. Review of plant-vanadium physiological interactions, bioaccumulation, and bioremediation of vanadium-contaminated sites[J]. The Science of the Total Environment, 2020, 712:135637 Siddiqui M H, Alamri S, Nasir Khan M, et al. Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress[J]. Journal of Hazardous Materials, 2020, 398:122882 Kinraide T B. Three mechanisms for the calcium alleviation of mineral toxicities[J]. Plant Physiology, 1998, 118(2):513-520 Kinraide T B, Wang P. The surface charge density of plant cell membranes (Sigma):An attempt to resolve conflicting values for intrinsic Sigma[J]. Journal of Experimental Botany, 2010, 61(9):2507-2518 Wang Y M, Kinraide T B, Wang P, et al. Modeling rhizotoxicity and uptake of Zn and Co singly and in binary mixture in wheat in terms of the cell membrane surface electrical potential[J]. Environmental Science&Technology, 2013, 47(6):2831-2838 Wang P, Zhou D M, Kinraide T B, et al. Cell membrane surface potential (psi0) plays a dominant role in the phytotoxicity of copper and arsenate[J]. Plant Physiology, 2008, 148(4):2134-2143 Kinraide T. The controlling influence of cell-surface electrical potential on the uptake and toxicity of selenate (SeO2-4)[J]. Physiologia Plantarum, 2003, 117:64-71 Wagatsuma T, Akiba R. Low surface negativity of root protoplasts from aluminum-tolerant plant species[J]. Soil Science and Plant Nutrition, 1989, 35(3):443-452 Wang P, Kopittke P M, de Schamphelaere K A C, et al. Evaluation of an electrostatic toxicity model for predicting Ni2+ toxicity to barley root elongation in hydroponic cultures and in soils[J]. The New Phytologist, 2011, 192(2):414-427 Kopittke P M, Kinraide T B, Wang P, et al. Alleviation of Cu and Pb rhizotoxicities in cowpea ( Vigna unguiculata ) as related to ion activities at root-cell plasma membrane surface[J]. Environmental Science&Technology, 2011, 45(11):4966-4973 Kopittke P M, Blamey F P, Wang P, et al. Calculated activity of Mn2+ at the outer surface of the root cell plasma membrane governs Mn nutrition of cowpea seedlings[J]. Journal of Experimental Botany, 2011, 62(11):3993-4001 Wang P, Kinraide T B, Zhou D M, et al. Plasma membrane surface potential:Dual effects upon ion uptake and toxicity[J]. Plant Physiology, 2011, 155(2):808-820 Gong B, He E K, Qiu H, et al. The cation competition and electrostatic theory are equally valid in quantifying the toxicity of trivalent rare earth ions (Y3+ and Ce3+) to Triticum aestivum [J]. Environmental Pollution, 2019, 250:456-463 Kinraide T B. Ion fluxes considered in terms of membrane-surface electrical potentials[J]. Functional Plant Biology, 2001, 28(7):607 Oorts K, Ghesquiere U, Swinnen K, et al. Soil properties affecting the toxicity of CuC12 and NiC12 for soil microbial processes in freshly spiked soils[J]. Environmental Toxicology and Chemistry, 2006, 25(3):836-844 International Organization for Standardization (ISO). Soil Quality:Determination of the effects of pollutants on soil flora:Part 1:Method for the measurement of inhibition of root growth ISO 11269-1:2012[S]. Geneva:ISO, 2012 Kinraide T B. Use of a Gouy-Chapman-stern model for membrane-surface electrical potential to interpret some features of mineral rhizotoxicity[J]. Plant Physiology, 1994, 106(4):1583-1592 Kopittke P M, Wang P, Menzies N W, et al. A web-accessible computer program for calculating electrical potentials and ion activities at cell-membrane surfaces[J]. Plant and Soil, 2014, 375(1-2):35-46 Le T T Y, Peijnenburg W J G M. Modelling toxicity of metal mixtures:A generalisation of new advanced methods, considering potential application to terrestrial ecosystems[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(7):409-454 Adams W J, Cardwell A S, DeForest D K, et al. Aluminum bioavailability and toxicity to aquatic organisms:Introduction to the special section[J]. Environmental Toxicology and Chemistry, 2018, 37(1):34-35 Parker D, Pedler J. Reevaluating the free-ion activity model of trace metal availability to higher plants[J]. Plant and Soil, 1997, 196:107-112 Pedler J F, Kinraide T B, Parker D R. Zinc rhizotoxicity in wheat and radish is alleviated by micromolar levels of magnesium and potassium in solution culture[J]. Plant and Soil, 2004, 259(1/2):191-199 Lock K, Criel P, de Schamphelaere K A, et al. Influence of calcium, magnesium, sodium, potassium and pH on copper toxicity to barley ( Hordeum vulgare )[J]. Ecotoxicology and Environmental Safety, 2007, 68(2):299-304 Wang X D, Li B, Ma Y B, et al. Development of a biotic ligand model for acute zinc toxicity to barley root elongation[J]. Ecotoxicology and Environmental Safety, 2010, 73(6):1272-1278 Chen B C, Ho P C, Juang K W. Alleviation effects of magnesium on copper toxicity and accumulation in grapevine roots evaluated with biotic ligand models[J]. Ecotoxicology, 2013, 22(1):174-183 Deleebeeck N M, de Schamphelaere K A, Heijerick D G, et al. The acute toxicity of nickel to Daphnia magna :Predictive capacity of bioavailability models in artificial and natural waters[J]. Ecotoxicology and Environmental Safety, 2008, 70(1):67-78 Kozlova T, Wood C M, McGeer J C. The effect of water chemistry on the acute toxicity of nickel to the cladoceran Daphnia pulex and the development of a biotic ligand model[J]. Aquatic Toxicology, 2009, 91(3):221-228 de Schamphelaere K A C, Janssen C R. A biotic ligand model predicting acute copper toxicity for Daphnia magna :The effects of calcium, magnesium, sodium, potassium, and Ph[J]. Environmental Science&Technology, 2002, 36(1):48-54 Thor K. Calcium:Nutrient and messenger[J]. Frontiers in Plant Science, 2019, 10:440 Siddiqui M H, Al-Whaibi M H, Sakran A M, et al. Calcium-induced amelioration of boron toxicity in radish[J]. Journal of Plant Growth Regulation, 2013, 32(1):61-71 Longchamp M, Angeli N, Castrec-Rouelle M. Effects on the accumulation of calcium, magnesium, iron, manganese, copper and zinc of adding the two inorganic forms of selenium to solution cultures of Zea mays [J]. Plant Physiology and Biochemistry, 2016, 98:128-137 -

计量
- 文章访问数: 2413
- HTML全文浏览数: 2413
- PDF下载数: 108
- 施引文献: 0