分子印迹技术与固相微萃取技术联用的研究进展

李文超, 王永花, 孙成, 杨绍贵. 分子印迹技术与固相微萃取技术联用的研究进展[J]. 环境化学, 2011, 30(9): 1663-1671.
引用本文: 李文超, 王永花, 孙成, 杨绍贵. 分子印迹技术与固相微萃取技术联用的研究进展[J]. 环境化学, 2011, 30(9): 1663-1671.
LI Wenchao, WANG Yonghua, SUN Cheng, YANG Shaogui. THE DEVELOPMENT OF MOLECULARLY IMPRINTED TECHNIQUE COUPLED WITH SOLID PHASE MICROEXTRACTION[J]. Environmental Chemistry, 2011, 30(9): 1663-1671.
Citation: LI Wenchao, WANG Yonghua, SUN Cheng, YANG Shaogui. THE DEVELOPMENT OF MOLECULARLY IMPRINTED TECHNIQUE COUPLED WITH SOLID PHASE MICROEXTRACTION[J]. Environmental Chemistry, 2011, 30(9): 1663-1671.

分子印迹技术与固相微萃取技术联用的研究进展

  • 基金项目:

    江苏省环境监测科研基金(No.1011)和Agilent Technologies Foundation(Grant ID 0851和Grant ID 2190)资助.

THE DEVELOPMENT OF MOLECULARLY IMPRINTED TECHNIQUE COUPLED WITH SOLID PHASE MICROEXTRACTION

  • Fund Project:
  • 摘要: 固相微萃取技术是一种广泛使用的样品前处理技术,涂层是固相微萃取技术的核心部分.目前商品化的涂层缺乏选择性,易受基质干扰,不适合复杂环境基质中痕量有机污染物的分析.分子印迹聚合物是一种具有强大分子识别功能的材料,具有高效的选择特异性,将其作为固相微萃取涂层,可提高其选择性,扩大其应用范围,是目前固相微萃取涂层的研究热点之一.本文介绍了分子印迹技术的基本原理,综述了近年来国内外分子印迹技术与固相微萃取技术联用的研究进展,包括分子印迹固相微萃取装置形式以及方法研究等,最后展望了分子印迹固相微萃取的发展方向.
  • 加载中
  • [1] Arthur C L, Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers[J]. Analytical Chemistry, 1990, 62 (19): 2145-2148
    [2] 傅若农. 固相微萃取(SPME)的演变和现状[J]. 化学试剂, 2008, 30(1): 13-22
    [3] 陈金美,曾景斌,陈文峰,等. 新型固相微萃取涂层的研究进展[J]. 化学进展, 2009, 21(9):1922-1929
    [4] Turiel E, Martin-Esteban A. Molecularly imprinted polymers for solid-phase microextraction[J]. Journal of Separation Science, 2009, 32(19):3278-3284
    [5] 黄健祥,胡玉玲,李攻科. 选择性固相微萃取涂层的研究进展[J]. 分析科学学报, 2008, 24(1): 97-102
    [6] 高会云,何娟,刘德仓.分子印迹技术与固相微萃取技术的联用[J].化学世界, 2008(4):252-254
    [7] 马玉哲,李红霞.分子印迹技术的应用进展[J]. 化工技术与开发, 2009, 38(4): 20-22
    [8] 谭淑珍,李革新,李再全.分子印迹技术的研究与应用[J]. 应用化工, 2004, 33(4): 4-6
    [9] Mullett W M, Martin P, Pawliszyn J, In-tube molecularly imprinted polymer solid-phase microextraction for the selective determination of propranolol[J]. Analytical Chemistry, 2001, 73(11):2383-2389
    [10] Koster E H M, Crescenzi C, Den Hoedt W, et al. Fibers coated with molecularly imprinted polymers for solid-phase microextraction[J]. Analytical Chemistry, 2001. 73(13):3140-3145
    [11] Hu X G, Hu Y L , Li G K. Development of novel molecularly imprinted solid-phase microextraction fiber and its application for the determination of triazines in complicated samples coupled with high-performance liquid chromatography[J]. Journal of Chromatography A, 2007, 1147: 1-9
    [12] Hu X G, Pan J L, Hu Y L. Preparation and evaluation of solid-phase microextraction fiber based on molecularly imprinted polymers for trace analysis of tetracyclines in complicated samples[J]. Journal of Chromatography A, 2008, 1188: 97-107
    [13] Hu X G, Pan J L, Hu Y L, et al. Preparation and evaluation of propranolol molecularly imprinted solid-phase microextraction fiber for trace analysis of beta-blockers in urine and plasma samples[J]. Journal of Chromatography A, 2009, 1216(2): 190-197
    [14] Hu Y L, Wang Y Y, Chen X G, et al. A novel molecularly imprinted solid-phase microextraction fiber coupled with high performance liquid chromatography for analysis of trace estrogens in fishery samples[J]. Talanta, 2010, 80(5): 2099-2105
    [15] Tan F, Zhao H X, Li X X, et al. Preparation and evaluation of molecularly imprinted solid-phase microextraction fibers for selective extraction of bisphenol A in complex samples[J]. Journal of Chromatography A, 2009, 1216: 5647-5654
    [16] Djozan D, Ebrahimi B, Mahkam M, et al. Evaluation of a new method for chemical coating of aluminum wire with molecularly imprinted polymer layer. Application for the fabrication of triazines selective solid-phase microextraction fiber[J]. Analytica Chimica Acta, 2010, 674: 40-48
    [17] Djozan D, Tahmineh B. Preparation and evaluation of solid-phase microextraction fibers based on monolithic molecularly imprinted polymers for selective extraction of diacetylmorphine and analogous compounds[J]. Journal of Chromatography A, 2007, 1166: 16-23
    [18] Turiel E, Tadeo J L, Martin-Esteban A. Molecularly imprinted polymeric fibers for solid-phase microextraction[J]. Analytical Chemistry, 2007 , 79:3099-3104
    [19] Djozan D, Ebrahimi B. Preparation of new solid phase micro extraction fiber on the basis of atrazine-molecular imprinted polymer:Application for GC and GC/MS screening of triazine herbicides in water, rice and onion[J]. Analytica chimica acta, 2008, 616 (2) : 152-159
    [20] Djozan D, Mahkam M, Ebrahimi B. Preparation and binding study of solid-phase microextraction fiber on the basis of ametryn-imprinted polymer application to the selective extraction of persistent triazine herbicides in tap water, rice, maize and onion[J]. Journal of Chromatography A, 2009(1216):2211-2219
    [21] David F, Sandra P. Stir bar sorptive extraction for trace analysis[J]. Journal of Chromatography A, 2007, 1152 (12): 54-69
    [22] Prieto A, Basauri O, Rodil R, et al. Stir-bar sorptive extraction: A view on method optimisation, novel applications, limitations and potential solutions[J]. Journal of Chromatography A, 2010, 1217(16): 2642-2666
    [23] Zhu X L, Cai J B, Yang J, et al. Films coated with molecular imprinted polymers for the selective stir bar sorption extraction of monocrotophos[J]. Journal of Chromatography A, 2006, 1131: 37-44
    [24] Zhu X L,Zhu Q S. Molecular imprinted nylon-6 stir bar as a novel extraction technique for enantioseparation of amino acids[J]. Journal of Applied Polymer Science, 2008, 109: 2665-2670
    [25] Xu Z G, Hu Y F, Hu Y L, et al. Investigation of ractopamine molecularly imprinted stir bar sorptive extraction and its application for trace analysis of β2-agonists in complex samples[J]. Journal of Chromatography A, 2010, 1217: 3612-3618
    [26] Hu Y L, Li J W, Hu Y F, et al. Development of selective and chemically stable coating for stir bar sorptive extraction by molecularly imprinted technique[J]. Talanta, 2010, 82:464-470
    [27] 林福华,黄晓佳,袁东星,等. 分子印迹聚合物为涂层的吸附萃取搅拌棒在环境水样双酚A含量测定中的应用色谱[J]. 色谱, 2010, 28(5): 507-512
    [28] Yu Jorn C C, Svetla Krushkova, Lai Edward P C, et al. Molecularly-imprinted polypyrrole-modified stainless steel frits for selective solid phase preconcentration of ochratoxin A[J]. Analytical and Bioanalytical Chemistry, 2005, 382(7): 1534-1540
    [29] Yu, Jorn C C, Lai Edward P C. Molecularly imprinted polypyrrole modified carbon nanotubes on stainless steel frit for selective micro solid phase pre-concentration of ochratoxin A[J]. Reactive & Functional Polymer, 2006, 66(7): 702-711
    [30] 吕运开,严秀平.分子印迹溶胶-凝胶材料的制备及应用[J]. 分析化学评述与进展, 2005, 33(2): 254-260
    [31] 王淼,刘萍,贾金平,等. 新型固相微萃取头测定胶粘剂中苯及其同系物[J]. 环境科学与技术, 2006, 29(6): 43-45
    [32] Li M K Y, Lei N Y, Gong C B, et al. An organically modified silicate molecularly imprinted solid-phase microextraction device for the determination of polybrominated diphenyl ethers[J]. Analytica Chimica Acta, 2009, 633: 197-203
    [33] Li Q L, Ma X X, Yuan D X, et al. Evaluation of the solid-phase microextraction fiber coated with single walled carbon nanotubes for the determination of benzene, toluene, ethylbenzene, xylenes in aqueous samples[J]. Journal of Chromatography A, 2010, 1217(15): 2191-2196
    [34] Prasad B B, Tiwari M P, Madhuri R, et al. Development of a highly sensitive and selective hyphenated technique(molecularly imprinted micro-solid phase extraction fiber-molecularlyimprinted polymer fiber sensor) for ultratrace analysis of folic acid[J]. Analytica Chimica Acta, 2010, 662:14-22
    [35] Prasad B B, Tiwari K, Singh M, et al. Molecularly imprinted polymer-based solid-phase microextraction fiber coupled with molecularly imprinted polymer-based sensor for ultratrace analysis of ascorbic acid[J]. Journal of Chromatography A, 2008,1198-1199: 59-66
    [36] Yang L Q, Zhao X M, Zhou J. Selective enrichment and determination of nicosulfuron in water and soil by a stir bar based on molecularly imprinted polymer coatings[J]. Analytica Chimica Acta, 2010, 670: 72-77
    [37] Zheng M M, Gong R, Zhao X, et al. Selective sample pretreatment by molecularly imprinted polymer monolith for the analysis of fluoroquinolones from milk samples[J]. Journal of Chromatography A, 2010, 1217: 2075-2081
  • 加载中
计量
  • 文章访问数:  1288
  • HTML全文浏览数:  1210
  • PDF下载数:  975
  • 施引文献:  0
出版历程
  • 收稿日期:  2010-10-27
李文超, 王永花, 孙成, 杨绍贵. 分子印迹技术与固相微萃取技术联用的研究进展[J]. 环境化学, 2011, 30(9): 1663-1671.
引用本文: 李文超, 王永花, 孙成, 杨绍贵. 分子印迹技术与固相微萃取技术联用的研究进展[J]. 环境化学, 2011, 30(9): 1663-1671.
LI Wenchao, WANG Yonghua, SUN Cheng, YANG Shaogui. THE DEVELOPMENT OF MOLECULARLY IMPRINTED TECHNIQUE COUPLED WITH SOLID PHASE MICROEXTRACTION[J]. Environmental Chemistry, 2011, 30(9): 1663-1671.
Citation: LI Wenchao, WANG Yonghua, SUN Cheng, YANG Shaogui. THE DEVELOPMENT OF MOLECULARLY IMPRINTED TECHNIQUE COUPLED WITH SOLID PHASE MICROEXTRACTION[J]. Environmental Chemistry, 2011, 30(9): 1663-1671.

分子印迹技术与固相微萃取技术联用的研究进展

  • 1.  污染控制与资源化研究国家重点实验室, 南京大学环境学院, 南京, 210093;
  • 2.  浅水湖泊综合治理与资源开发教育部重点实验室, 河海大学环境学院, 南京, 210098
基金项目:

江苏省环境监测科研基金(No.1011)和Agilent Technologies Foundation(Grant ID 0851和Grant ID 2190)资助.

摘要: 固相微萃取技术是一种广泛使用的样品前处理技术,涂层是固相微萃取技术的核心部分.目前商品化的涂层缺乏选择性,易受基质干扰,不适合复杂环境基质中痕量有机污染物的分析.分子印迹聚合物是一种具有强大分子识别功能的材料,具有高效的选择特异性,将其作为固相微萃取涂层,可提高其选择性,扩大其应用范围,是目前固相微萃取涂层的研究热点之一.本文介绍了分子印迹技术的基本原理,综述了近年来国内外分子印迹技术与固相微萃取技术联用的研究进展,包括分子印迹固相微萃取装置形式以及方法研究等,最后展望了分子印迹固相微萃取的发展方向.

English Abstract

参考文献 (37)

返回顶部

目录

/

返回文章
返回