氢氧化镧改良沉积物对水中磷的吸附特征

何思琪, 周亚义, 林建伟, 张宏华, 汪振华, 詹艳慧, 汲雨, 奚秀清, 邢云青, 高春梅. 氢氧化镧改良沉积物对水中磷的吸附特征[J]. 环境化学, 2018, 37(11): 2565-2574. doi: 10.7524/j.issn.0254-6108.2018011104
引用本文: 何思琪, 周亚义, 林建伟, 张宏华, 汪振华, 詹艳慧, 汲雨, 奚秀清, 邢云青, 高春梅. 氢氧化镧改良沉积物对水中磷的吸附特征[J]. 环境化学, 2018, 37(11): 2565-2574. doi: 10.7524/j.issn.0254-6108.2018011104
HE Siqi, ZHOU Yayi, LIN Jianwei, ZHANG Honghua, WANG Zhenhua, ZHAN Yanhui, JI Yu, XI Xiuqing, XING Yunqing, GAO Chunmei. Adsorption characteristics of phosphate in water on lanthanum hydroxide-amended sediments[J]. Environmental Chemistry, 2018, 37(11): 2565-2574. doi: 10.7524/j.issn.0254-6108.2018011104
Citation: HE Siqi, ZHOU Yayi, LIN Jianwei, ZHANG Honghua, WANG Zhenhua, ZHAN Yanhui, JI Yu, XI Xiuqing, XING Yunqing, GAO Chunmei. Adsorption characteristics of phosphate in water on lanthanum hydroxide-amended sediments[J]. Environmental Chemistry, 2018, 37(11): 2565-2574. doi: 10.7524/j.issn.0254-6108.2018011104

氢氧化镧改良沉积物对水中磷的吸附特征

  • 基金项目:

    国家自然科学基金(51408354,50908142),上海市自然科学基金(15ZR1420700)和上海海洋大学优秀本科生进实验室项目资助.

Adsorption characteristics of phosphate in water on lanthanum hydroxide-amended sediments

  • Fund Project: Supported by the National Natural Science Foundation of China(51408354, 50908142), the Natural Science Foundation of Shanghai(15ZR1420700)and the Project of Shanghai Ocean University Outstanding Undergraduate Entering the Laboratory.
  • 摘要: 考察了氢氧化镧改良沉积物对水中磷酸盐的吸附特征,并考察了被改良沉积物所吸附磷酸盐的形态分布特征.结果发现,氢氧化镧改良沉积物对水中低浓度磷酸盐的吸附可以采用线性模型进行描述,而对高浓度磷酸盐的吸附则适合采用Langmuir模型进行描述.准二级动力学比准一级动力学模型更适合用于拟合改良沉积物对水中磷酸盐的吸附动力学过程,膜扩散和颗粒内扩散共同控制了缓慢吸附阶段的速率.强碱性条件不利于改良沉积物对水中磷酸盐的吸附.溶液共存的Cl-、SO42-、HCO3-、Na+、K+和Mg2+对改良沉积物吸附水中磷酸盐的影响较小,而溶液共存的Ca2+会促进改良沉积物对水中磷酸盐的吸附.改良沉积物对水中磷酸盐的吸附能力明显强于未改良沉积物.改良沉积物的最大磷酸盐单位吸附量明显高于未改良沉积物,并且改良沉积物的最大单位吸附量随着氢氧化镧添加量的增加而增加.改良沉积物的初始吸附速率随着氢氧化镧添加量的增加也随之增加.改良沉积物的磷吸附-解吸平衡浓度(EPC0)明显低于未改良沉积物.被改良沉积物所吸附的磷酸盐中大部分(84%)以较为稳定的NaOH-rP和HCl-P形态存在,仅仅只有16%左右会以容易释放的NH4Cl-P和BD-P形态存在.以上结果显示,添加氢氧化镧不仅可以增强沉积物对水中磷酸盐的吸附能力,而且可以降低沉积物中磷的释放风险,氢氧化镧是一种有希望的可以用于沉积物内源磷释放的改良剂.
  • 加载中
  • [1] 揣小明, 杨柳燕, 程书波, 等. 太湖和呼伦湖沉积物对磷的吸附特征及影响因素[J].环境科学, 2014, 35(3):951-957.

    CHUAI X M, YANG L Y, CHENG S B, et al. Characteristics and influencing factors of phosphorus adsorption on sedimentin Lake Taihu and Lake Hulun[J]. Environmental Science, 2014, 35(3):951-957(in Chinese).

    [2] SMITH VH, TILMAN G D,NEKOLA J C. Eutrophication:Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems[J]. Environmental Pollution, 1999, 100(1-3):179-196.
    [3] JING L D, LIU X L, BAI S, et al. Effects of sediment dredging on internal phosphorus:A comparative field study focused on iron and phosphorus forms in sediments[J]. Ecological Engineering, 2015, 82:267-271.
    [4] LIU C, ZHONG J C, WANGJ J, et al. Fifteen-year study of environmental dredging effect on variation of nitrogen and phosphorus exchange across the sediment-water interface of an urban lake[J]. Environmental Pollution, 2016, 219:639-648.
    [5] KOPACEK J, BOROVEC J, HEJZLAR J, et al. Aluminum control of phosphorus sorption by lake sediments[J]. Environmental Science & Technology, 2005, 39(22):8784-8789.
    [6] RYDIN E, WELCH E B. Aluminum dose required to inactivate phosphate in lake sediments[J]. Water Research, 1998, 32(10):2969-2976.
    [7] YAMADA T M, SUEITT A P E, BERALDO D A S, et al. Calcium nitrate addition to control the internal load of phosphorus from sediments of a tropical eutrophic reservoir:Microcosm experiments[J]. Water Research, 2012, 46(19):6463-6475.
    [8] LIU X N, TAO Y, ZHOU K Y, et al. Effect of water quality improvement on the remediation of river sediment due to the addition of calcium nitrate[J]. Science of the Total Environment, 2017, 575:887-894.
    [9] CHENJJ, LU S Y, ZHAO Y K, et al. Effects of overlying water aeration on phosphorus fractions and alkaline phosphatase activity in surface sediment[J]. Journal Environmental Science, 2011, 23(2):206-211.
    [10] 林建伟, 朱志良, 赵建夫.曝气复氧对富营养化水体底泥氮磷释放的影响[J].生态环境, 2005, 14(6):812-815.

    LIN J W, ZHU Z L, ZHAO J F. Effect of aeration on release of nitrogen and phosphorusfrom sediments in eutrophic waterbody[J].Ecology and Environment, 2005, 14(6):812-815(in Chinese).

    [11] 莫家勇, 钟萍, 刘正文.生态修复对浅水湖泊沉积物磷形态特征及湖水磷浓度的影响[J].应用与环境生物学报, 2016, 22(2):320-325.

    MO J Y, ZHONG P, LIU Z W. Effects of ecological restoration on the sediment phosphorus form and the water phosphorus concentration in a shallow lake[J]. Chinese Journal of Applied and Environmental Biology, 2016, 22(2):320-325(in Chinese).

    [12] KIM G, JUNG W. Role of sand capping in phosphorus release from sediment[J].Ksce Journal of Civil Engineering, 2010, 14(6):815-821.
    [13] 李佳, 林建伟, 詹艳慧. 镧改性沸石活性覆盖控制重污染河道底泥溶解性磷酸盐和铵释放研究[J].环境科学, 2013, 34(11):4266-4274.

    LI J, LIN J W, ZHAN Y H. Evaluation of in situ capping with lanthanum-modified zeolite to controlphosphate and ammonium release from sediments in heavily polluted river[J]. Environmental Science, 2013, 34(11):4266-4274(in Chinese).

    [14] 席银, 王圣瑞, 赵海超, 等. 覆盖不同材料对湖泊沉积物磷释放影响机制[J].环境化学, 2017, 36(3):532-541.

    XI Y, WANG S R, ZHAO H C, et al. Impact of different capping materials on the phosphorus release from lake sediment[J].Environmental Chemistry, 2017, 36(3):532-541(in Chinese).

    [15] COPETTI D, FINSTERLE K, MARZIALI L, et al. Eutrophication management in surface waters using lanthanum modifiedbentonite:A review[J]. Water Research, 2016, 97:162-174.
    [16] TEKILE A, KIM I,KIMJ. Mini-review on river eutrophication and bottom improvement techniques, with special emphasis on the Nakdong River[J]. Journal of Environmental Sciences, 2015, 30:113-121.
    [17] ZAMPARASM, ZACHARIAS I. Restoration of eutrophic freshwater by managing internal nutrient loads:A review[J]. Science of the Total Environment, 2014, 496:551-562.
    [18] MEIS S, SPEARS B M, MABERLY S C, et al. Assessing the mode of action of Phoslock® in the control of phosphorus release from the bed sediments in a shallow lake (Loch Flemington, UK)[J]. Water Research, 2013, 47(13):4460-4473.
    [19] WANG Y, DINGS M, WANG D, et al. Static layer:A key to immobilization of phosphorus in sediments amended with lanthanum modified bentonite (Phoslock®)[J]. Chemical Engineering Journal, 2017, 325:49-58.
    [20] MEIS S, SPEARS B M, MABERLY S C, et al. Sediment amendment with Phoslock® in Clatto Reservoir (Dundee, UK):Investigating changes in sediment elemental composition and phosphorus fractionation[J]. Journal of Environmental Management, 2012, 93(1):185-193.
    [21] 李静, 朱广伟, 张晓松, 等. 锁磷剂及覆盖技术对长广溪不同污染类型河段底泥磷释放的控制效果[J].环境化学, 2015, 34(2):358-366.

    LI J, ZHU G W, ZHANG X S, et al. Control effect of phoslock and sand-capping on sediment phosphorus release in different pollutedsections of Changguangxi River[J]. Environmental Chemistry, 2015, 34(2):358-366(in Chinese).

    [22] 朱广伟, 李静, 朱梦圆, 等. 锁磷剂对杭州西湖底泥磷释放的控制效果[J].环境科学, 2017, 38(4):1451-1459.

    ZHU G W, LI J, ZHU M Y, et al. Efficacy of Phoslock® on the reduction of sediment phosphorus release in West Lake,Hangzhou,China[J]. Environmental Science, 2017, 38(4):1451-1459(in Chinese).

    [23] XIE J, WANG Z, LU SY, et al. Removal and recovery of phosphate from water by lanthanum hydroxide materials[J]. Chemical Engineering Journal, 2014, 254:163-170.
    [24] XIE J, WANG Z, FANG D, et al. Green synthesis of a novel hybrid sorbent of zeolite/lanthanum hydroxide and its application in the removal and recovery of phosphate from water[J]. Journal of Colloid and Interface Science, 2014, 423:13-19.
    [25] ZHANG L, ZHOU Q, LIU J Y, et al. Phosphate adsorption on lanthanum hydroxide-doped activated carbon fiber[J]. Chemical Engineering Journal, 2012, 185-186:160-167.
    [26] RYDIN E. Potentially mobile phosphorus in Lake Erken sediment[J]. Water Research, 2000, 34(7):2037-2042.
    [27] WANG CH, BAI LL, JIANG H L, et al. Algal bloom sedimentation induces variable control of lake eutrophication by phosphorus inactivating agents[J]. Science of the Total Environment, 2016, 557-558:479-488.
    [28] 陈春瑜, 徐晓梅, 邓伟明, 等. 滇池表层沉积物对磷的吸附特征[J].环境科学学报, 2014, 34(12):3065-3075.

    CHEN C Y, XU X M, DENG W M, et al. Characteristics of phosphorus adsorption on surface sediments of Dianchi Lake[J]. Acta Scientiae Circumstantiae, 2014, 34(12):3065-3075(in Chinese).

    [29] LANGMUIRI. The constitution and fundamental properties of solids and liquids Part I. Solid[J]. Journal of the American Chemical Society, 1916, 38(11):2221-2295.
    [30] FREUNDLICH H. Colloid and Capillary Chemistry[M]. London:Methuen, 1926.
    [31] HO Y S,MCKAYG. Pseudo-second order model for sorption processes[J].Process Biochemistry, 1999, 34(5):451-465.
    [32] SU Y, CUI H, LI Q, et al. Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles[J]. Water Research, 2013, 47(14):5018-5026.
    [33] HE Y H, LIN H, DONG Y B, et al. Preferable adsorption of phosphate using lanthanum-incorporated porous zeolite:Characteristics and mechanism[J]. Applied Surface Science, 2017, 426:995-1004.
    [34] ZONG E M, WEI D, WAN H Q, et al. Adsorptive removal of phosphate ions from aqueous solutionusing zirconia-functionalized graphite oxide[J]. Chemical Engineering Journal, 2013, 221:193-203.
    [35] YANG M J, LIN J W, ZHAN Y H, et al. Adsorption of phosphate from water on lake sediments amended with zirconium-modified zeolites in batch mode[J]. Ecological Engineering, 2014, 71:223-233.
    [36] WANG C H, BAI LL,PEIY S. Assessing the stability of phosphorus in lake sediments amended with water treatment residuals[J]. Journal of Environmental Management, 2013, 122:31-36.
    [37] 林建伟, 方巧, 詹艳慧. 镧-四氧化三铁-沸石复合材料制备及去除水中磷酸盐和铵[J]. 环境化学, 2015, 34(12):2287-2297.

    LIN J W, FANG Q, ZHAN Y H. Preparation of lanthanum/magnetite/zeolite composite and its application for phosphate and ammoniumremoval from aqueous solution[J]. Environmental Chemistry, 2015, 34(12):2287-22971(in Chinese).

  • 加载中
计量
  • 文章访问数:  1251
  • HTML全文浏览数:  1229
  • PDF下载数:  42
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-01-11
  • 刊出日期:  2018-11-15
何思琪, 周亚义, 林建伟, 张宏华, 汪振华, 詹艳慧, 汲雨, 奚秀清, 邢云青, 高春梅. 氢氧化镧改良沉积物对水中磷的吸附特征[J]. 环境化学, 2018, 37(11): 2565-2574. doi: 10.7524/j.issn.0254-6108.2018011104
引用本文: 何思琪, 周亚义, 林建伟, 张宏华, 汪振华, 詹艳慧, 汲雨, 奚秀清, 邢云青, 高春梅. 氢氧化镧改良沉积物对水中磷的吸附特征[J]. 环境化学, 2018, 37(11): 2565-2574. doi: 10.7524/j.issn.0254-6108.2018011104
HE Siqi, ZHOU Yayi, LIN Jianwei, ZHANG Honghua, WANG Zhenhua, ZHAN Yanhui, JI Yu, XI Xiuqing, XING Yunqing, GAO Chunmei. Adsorption characteristics of phosphate in water on lanthanum hydroxide-amended sediments[J]. Environmental Chemistry, 2018, 37(11): 2565-2574. doi: 10.7524/j.issn.0254-6108.2018011104
Citation: HE Siqi, ZHOU Yayi, LIN Jianwei, ZHANG Honghua, WANG Zhenhua, ZHAN Yanhui, JI Yu, XI Xiuqing, XING Yunqing, GAO Chunmei. Adsorption characteristics of phosphate in water on lanthanum hydroxide-amended sediments[J]. Environmental Chemistry, 2018, 37(11): 2565-2574. doi: 10.7524/j.issn.0254-6108.2018011104

氢氧化镧改良沉积物对水中磷的吸附特征

  • 1.  上海海洋大学, 海洋生态与环境学院, 上海, 201306;
  • 2.  浙江工业大学环境学院, 杭州, 310032
基金项目:

国家自然科学基金(51408354,50908142),上海市自然科学基金(15ZR1420700)和上海海洋大学优秀本科生进实验室项目资助.

摘要: 考察了氢氧化镧改良沉积物对水中磷酸盐的吸附特征,并考察了被改良沉积物所吸附磷酸盐的形态分布特征.结果发现,氢氧化镧改良沉积物对水中低浓度磷酸盐的吸附可以采用线性模型进行描述,而对高浓度磷酸盐的吸附则适合采用Langmuir模型进行描述.准二级动力学比准一级动力学模型更适合用于拟合改良沉积物对水中磷酸盐的吸附动力学过程,膜扩散和颗粒内扩散共同控制了缓慢吸附阶段的速率.强碱性条件不利于改良沉积物对水中磷酸盐的吸附.溶液共存的Cl-、SO42-、HCO3-、Na+、K+和Mg2+对改良沉积物吸附水中磷酸盐的影响较小,而溶液共存的Ca2+会促进改良沉积物对水中磷酸盐的吸附.改良沉积物对水中磷酸盐的吸附能力明显强于未改良沉积物.改良沉积物的最大磷酸盐单位吸附量明显高于未改良沉积物,并且改良沉积物的最大单位吸附量随着氢氧化镧添加量的增加而增加.改良沉积物的初始吸附速率随着氢氧化镧添加量的增加也随之增加.改良沉积物的磷吸附-解吸平衡浓度(EPC0)明显低于未改良沉积物.被改良沉积物所吸附的磷酸盐中大部分(84%)以较为稳定的NaOH-rP和HCl-P形态存在,仅仅只有16%左右会以容易释放的NH4Cl-P和BD-P形态存在.以上结果显示,添加氢氧化镧不仅可以增强沉积物对水中磷酸盐的吸附能力,而且可以降低沉积物中磷的释放风险,氢氧化镧是一种有希望的可以用于沉积物内源磷释放的改良剂.

English Abstract

参考文献 (37)

返回顶部

目录

/

返回文章
返回