新疆独山子石化区域PM2.5中水溶性无机离子的形成机制
Formation mechanism of water-soluble inorganic ions in PM2.5 in Dushanzi Petrochemical District, Xinjiang
-
摘要: 2015年9月至2016年7月在新疆独山子区采集大气PM2.5样品,对所含的水溶性无机离子和大气气态污染物的季节性变化进行了分析.其结果表明,PM2.5、SO2、NO2和O3的年均浓度分别为70.04、19.36、4.50、83.06 μg·m-3;PM2.5、SO2、NO2的浓度均出现冬季最高,夏季最低的趋势,而O3浓度在春、夏季节偏高,冬季偏低;总水溶性无机离子的季节变化特征为冬季(68.99 μg·m-3) > 秋季(14.23 μg·m-3) > 春季(10.31 μg·m-3) > 夏季(5.06 μg·m-3),其中SO42-、NO3-、NH4+为水溶性无机离子的主要组成部分,占到水溶性总离子质量浓度的70%以上.对硫氧化率(SOR)和氮氧化率(NOR)的估算表明,全年SOR的值均大于0.1,表明SO42-主要来自大气二次转化.夏季NOR值远低于其它季节.SO42-浓度和SOR在冬季出现较高值,可能是由于冬季取暖导致SO2排放量增加,同时较高的相对湿度又促进了SO2的非均相转化.受相对湿度的影响,NO3-在冬季主要以非均相反应的方式生成,在春、夏、秋的3个季节主要以均相反应的方式生成;当PM2.5的质量浓度大于75 μg·m-3时,NO3-/SO42-、NOR/SOR和NOR值均显著增加,表明独山子区的硝酸盐污染较为严重.Abstract: PM2.5 samples were collected in Dushanzi area from September 2015 to July 2016. The seasonal variation of water-soluble inorganic ions and gaseous pollutants (NO2, SO2 and O3) were analyzed. The average concentrations of PM2.5, NO2, SO2 and O3 were 70.04, 19.36, 4.50 and 83.06 μg·m-3, respectively. The concentrations of PM2.5, NO2 and SO2 were the highest in the winter and the lowest in the summer, while O3 levels were the highest during spring-summer and the lowest in the winter. The total concentration of water-soluble inorganic ions decrease in the order:winter > autumn > spring > summer. Sulfate, nitrate and ammonium were the major components in PM2.5 with the sum accounting for more than 70% of PM2.5 mass concentration. The sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) were calculated respectively. SOR was higher than 0.1 in the four seasons, suggesting that the observed sulfate was mainly from secondary formation. NOR was much lower in the summer than in the other seasons. High sulfate levels and SOR values in the winter were largely due to enhanced emission of SO2 from coal burning for heating and enhanced heterogeneous reactions of SO2 under high relative humidity conditions. Under the influence of relative humidity, nitrate was generated in the homogeneous and heterogeneous reactions in the winter and was generated in of homogeneous reactions in the spring, summer, and autumn. The ratios of nitrate to sulfate and NOR to SOR as well as NOR values were all significantly increased when PM2.5 exceeded 75 μg·m-3, indicating an important role of nitrate during the polluted period in Dushanzi area.
-
Key words:
- PM2.5 /
- Dushanzi /
- water-soluble inorganic ions /
- gaseous pollutants /
- seasonal variation /
- Xinjiang
-
-
[1] TAO J, ZHANG L, HO K, et al. Impact of PM2.5 chemical compositions on aerosol light scattering in Guangzhou-the largest megacity in South China[J]. Atmospheric Research, 2014, 135:48-58. [2] SZOPA S, BALKANSKI Y, SCHULZ M, et al. Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100[J]. Climate Dynamics, 2013, 40(9-10):2223-2250. [3] 郭安可, 郭照冰, 张海潇,等. 南京北郊冬季PM2.5中水溶性离子以及碳质组分特征分析[J]. 环境化学, 2017, 36(2):248-256. GUO A K, GUO Z B, ZHANG H X, et al. Analysis of water soluble ions and carbon component in PM2.5 in the northern suburb of Nanjing in winter[J]. Environmental Chemistry, 2017, 36(2):248-256. (in Chinese).
[4] TANG Y, AN J, WANG F, et al. Impacts of an unknown daytime HONO source on the mixing ratio and budget of HONO, and hydroxyl, hydroperoxyl, and organic peroxy radicals, in the coastal regions of China[J]. Atmospheric Chemistry & Physics, 2015, 15(16):9381-9398. [5] BAKER K, SCHEFF P. Photochemical model performance for PM2.5 sulfate, nitrate, ammonium, and precursor species SO2, HNO3, and NH3 at background monitor locations in the central and eastern United States[J]. Atmospheric Environment, 2007, 41(29):6185-6195. [6] SONG Y, XIE Z S, ZENG L, et al. Source apportionment of PM2.5 in Beijing by positive matrix factorization[J]. Atmospheric Environment, 2006, 40(8):1526-1537. [7] 刘志明. 兰州市PM2.5污染特征及其来源解析[D]. 兰州:兰州大学, 2016. LIU Z M. Pollution characteristics and source apportionment of PM2.5 in Lanzhou[D], Lanzhou:Lanzhou University, 2016 (in Chinese).
[8] 周佳佳, 石金辉, 李丽平,等. 青岛大气中酸碱气体及PM2.5中水溶性离子的浓度特征和气粒平衡关系[J]. 环境科学, 2015,36(9):3135-3143. ZHOU J J, SHI J H, LI L P, et al. Concentration of acid gases, ammonia and related water-soluble ions in PM2.5 and gas-particle partitioning in Qingdao[J]. Environmental Sciences, 2015,36(9):3135-3143(in Chinese).
[9] 谢丹丹, 祁建华, 张瑞峰. 青岛不同强度霾天气溶胶中二次无机离子的生成及粒径分布[J]. 环境科学, 2017, 38(7):2667-2678. XIE D D, QI J W, ZHANG R F, et al. Formation and size distribution of the secondary aerosol inorganic ions in different intensity of haze in Qingdao, China[J]. Environmental Sciences, 2017, 38(7):2667-2678(in Chinese).
[10] 薛国强, 朱彬, 王红磊. 南京市大气颗粒物中水溶性离子的粒径分布和来源解析[J]. 环境科学, 2014, 35(5):1633-1643. XUE G Q, ZHU B, WANG H L, et al. Size distributions and source apportionment of soluble ions in aerosol in Nanjing[J]. Environmental Sciences, 2014, 35(5):1633-1643(in Chinese).
[11] 杨叶. 矿业城市大气颗粒物粒径及水溶性离子分布特征[D]. 合肥:安徽大学, 2016. YANG Y. Size distributions of atmospheric particulates and water soluble inorganic ion in aerosol particles in mining city[D]. Hefei:Anhui University, 2016(in Chinese). [12] MI T, WANG H B, YANG C, et al. Highly time-resolved characterization of water-soluble inorganic ions in PM2.5, in a humid and acidic mega city in Sichuan Basin, China[J]. Science of the Total Environment, 2016, 580:224-234. [13] SHON Z H, KIM K H, SONG S K, et al. Relationship between water-soluble ions in PM2.5, and their precursor gases in Seoul megacity[J]. Atmospheric Environment, 2012, 59(7):540-550. [14] 尤然. 玉溪市大气PM2.5污染特征与来源解析研究[D]. 昆明:昆明理工大学, 2016. YOU R. The pollution characteristics and apportionment of PM2.5 in Yuxi[D]. Kunming:Kunming University of Science and Technology, 2016 (in Chinese).
[15] 刘翠. 西安市环境空气质量污染变化特征与影响因素研究[D]. 西安:西北大学, 2013. LIU C. Atmospheric environmental pollution characteristics and study of influencing factors in Xi'an[D]. Xi'an:Northwest University, 2013(in Chinese). [16] 郑晓霞,李令军,赵文吉,等.京津冀地区大气NO2污染特征研究[J]. 生态环境学报,2014, 23(12):1938-1945. ZHENG X X, LI L J, ZHAO W J, et al. Spatial and temporal characteristics of atmospheric NO2 in the Beijing-Tianjin-Hebei Region[J]. Ecology and Environmental Sciences, 2014, 23(12):1938-1945(in Chinese).
[17] YAO X H, LING T Y, FANG M, et al. Comparison of thermodynamic predictions for in situ pH in PM 2.5[J]. Atmospheric Environment,2006,40(16):2835-2844. [18] HU M, WU Z J, SLANINA J, et al. Acidic gases, ammonia and water-soluble ions in PM 2.5 at a coastal site in the Pearl River Delta, China[J]. Atmospheric Environment, 2008, 42(25):6310-6320. [19] 赵斌, 马建中. 天津市大气污染源排放清单的建立[J]. 环境科学学报, 2008, 28(2):368-375. ZHAO B, MA J Z. Development of an air pollutant emission inventory for Tianjin[J]. Acta Scientiae Circumstantiae, 2008, 28(2):368-375(in Chinese).
[20] 葛宝珠, 王自发, 孙业乐,等. 光谱法与传统荧光法测量北京大气NO2浓度及其对臭氧生成效率的影响[J]. 环境化学, 2014, 33(9):1558-1565. GE B Z, WANG Z F, SUN Y L, et al. Comparison between cavity attenuated phase shift spectroscopy (CAPS) and chemiluminescence-based (CL) instrument in NO2 measurement in Beijing,China[J]. Environmental Chemistry, 2014, 33(9):1558-1565(in Chinese).
[21] 李英红, 谭吉华, 饶志国, 等. 兰州市大气细颗粒物中水溶性离子的污染特征[J]. 环境化学, 2016, 35(9):1799-1807. LI Y H, TAN J H, RAO Z G, et al. Pollution characteristics of water soluble ions in atmospheric fine particles in Lanzhou[J], Environmental Chemistry, 2016, 35(9):1799-1807(in Chinese).
[22] SHON Z H, GHOSH S, KIM K H, et al. Analysis of water-soluble ions and their precursor gases over diurnal cycle[J]. Atmospheric Research, 2013, 132-133(10):309-321. [23] [24] 李丽平. 青岛大气PM2.5中水溶性无机离子及其前体气体的浓度特征和气-粒平衡关系[D]. 青岛:中国海洋大学, 2014. LI L P. Concentrations of water-soluble inorganic ions in PM2.5 and their precursor gases, and gases-particle partitioning analysis in Qingdao,China[D]. Qingdao:Ocean University of China, 2014 (in Chinese).
[25] JACOB D J. An Introduction to Atmospheric Chemistry[J]. Quarterly Review of Biology, 2001, 82(42):490-490. [26] ANDREAE M O, BROWELL E V, GARSTANG M, et al. Biomass-burning emissions and associated haze layers over Amazonia[J]. Journal of Geophysical Research Atmospheres, 1988, 93(D2):1509-1527. [27] 杨少波, 曹念文. 南京北郊硫酸盐气溶胶性质实验观测[J]. 中国环境科学, 2017, 37(8):2813-2821. YANG S B, CAO N W. Experiment observation of sulfate aerosol properties in northern suburb of Nanjing[J]. China Environmental Science, 2017, 37(8):2813-2821(in Chinese).
[28] 焦坤灵, 袁猛, 张连科,等. SO2在高岭土表面气-粒转化及影响因素[J]. 环境工程学报, 2016, 10(9):5082-5088. JIAO K L, YUAN M, ZHANG L K, et al. Gas-to particle transformation and the influence factors of SO2 on the surface of kaolin[J]. Chinese Journal of Environmental Engineering, 2016, 10(9):5082-5088(in Chinese).
[29] 郝建奇,葛宝珠,王自发,等. 2014年6月南京大气复合污染观测[J]. 环境科学,2017,38(9):3585-3593. HAO J Q, GE B Z, WANG Z F, et al. Observational study of air pollution complex in Nanjing in June 2014[J]. Environmental Science, 2017,38(9):3585-3593(in Chinese).
[30] PATHAK R K, WU W S, WANG T. Summertime PM2.5 ionic species in four major cities of China:nitrate formation in an ammonia-deficient atmosphere[J]. Atmospheric Chemistry & Physics, 2008, 9(5):1711-1722. [31] HE K, ZHAO Q, MA Y, et al. Spatial and seasonal variability of PM2.5 acidity at two Chinese megacities:insights into the formation of secondary inorganic aerosols[J]. Atmospheric Chemistry & Physics, 2012, 11(9):25557-25603. -

计量
- 文章访问数: 1343
- HTML全文浏览数: 1327
- PDF下载数: 113
- 施引文献: 0