土壤中邻苯二甲酸酯气相色谱保留分异及其构效关系
Differentiation of gas chromatographic retention and structure-property relationship of phthalate acid esters in soil
-
摘要: 本文选择典型HP-5MS色谱柱和选择离子扫描模式(SIM),通过不同土壤加标回收验证和分析参数调节,优化建立了适用于土壤中邻苯二甲酸酯(PAEs)的气相色谱-质谱联用(GC-MS)检测分析方法,揭示了PAEs色谱保留分异特征;结合PAEs主要电子结构和热力学性质的量子化学Hartree-Fock计算,由偏最小二乘(PLS)分析方法成功发展了PAEs色谱保留分异的定量结构-性质相关关系(QSPR).研究结果显示,GC-MS分析方法对土壤中酞酸酯的平均回收率在70.64%-119.80%之间,相对标准偏差为0.23%-16.45%,表明其对不同土壤中PAEs的分析测定具有较好适宜性.QSPR对色谱保留分异的调整累积解释方差Ry,cum (adj)2达0.968,累积交叉验证相关系数Qcum2和外部预测相关系数QEXT2分别为0.941与0.854,表明模型具有较好的稳定性和预测性能,可满足PAEs未知色谱保留行为准确预测和定性识别的要求.QSPR分析表明,PAEs分子的极化率及其与弱极性固定相分子间的色散作用是主导其色谱保留分异与变化的重要结构因子,而PAEs的热力学稳定性越强,热运动越慢,越可能极大促进PAEs在色谱固定相表面通过色散而非化学作用介导的吸附过程,延长色谱保留时间.这对环境中PAEs的分析与鉴定具有重要的科学意义.Abstract: Based on the validation of spiked soils recovery and optimization of analytical parameters, a gas chromatography mass spectrometry (GC-MS) equipped with a HP-5MS column and selective ion monitoring (SIM) mode was developed for the determination of PAEs in soils. Differentiation of gas chromatographic retention of PAEs was revealed at the same time. By combiming the quantum Hartree-Fock calculations of the major electronic structures and thermodynamic properties of PAEs, a quantitative structure-property relationship (QSPR) of chromatographic retention of PAEs was successfully developed by partial least squares (PLS) analysis. The results showed that the average recoveries of the PAEs in soils were in the range of 70.64% to 119.80% with relative standard deviations of 0.23% to 16.45%, which indicated high applicability to the determination of the PAEs in different soils. The cumulative interpretation variance of QSPR for chromatographic retention differentiation was up to 0.968, and the correlation coefficients given by cumulative cross-validation and external prediction were 0.941 and 0.854, respectively. The optimized QSPR was shown to be highly robust and predictive, which could meet the requirements of accurate prediction and qualitative identification of unknown chromatographic retention of PAEs. Furthermore, the analysis of QSPR indicated that the polarizability of PAEs and the latent dispersion interaction with the molecules of weakly polar stationary phase were the important structural factors, which were believed to dominate the differentiation and variation of gas chromatographic retention. The stronger the thermodynamic stability of PAEs, the slower the thermal motion, the more likely it is that PAEs are adsorbed on the surface of the chromatographic stationary phase by dispersion rather than chemical action, and the chromatographic retention times of PAEs are further extended.
-
-
[1] 陈永山, 骆永明, 章海波, 等. 设施菜地土壤酞酸酯污染的初步研究[J]. 土壤学报, 2011, 48(3):516-523. CHEN Y S,LUO Y M,ZHANG H B, et al. Preliminary study on PAEs pollution of greenhouse soils[J]. Acta Pedologica Sinica, 2011, 48(3):516-523(in Chinese).
[2] 胡雄星, 韩中豪, 周亚康, 等. 黄浦江表层水体中邻苯二甲酸酯的分布特征及风险评价[J]. 环境化学, 2007, 26(2):258-259. HU X X, HAN Z H, ZHOU Y K, et al. Distribution characteristics and risk assessment of phthalic acid esters in the surface water of Huangpu River[J]. Environmental Chemistry, 2007, 26(2):258-259(in Chinese).
[3] 朱振宇, 姬亚芹, 张诗建, 等. 1月天津市大气PM2.5中邻苯二甲酸酯污染特征及暴露分析[J]. 环境化学, 2015, 34(7):1371-1373. ZHU Z Y, JI Y Q, ZHANG S J, et al. Pollution characteristics and exposure analysis of phthalates in atmospheric PM2.5 in Tianjin city in January[J]. Environmental Chemistry, 2015, 34(7):1371-1373(in Chinese).
[4] 黄永辉. SPE-GC-MS法同时测定奶粉中18种邻苯二甲酸酯迁移量[J]. 食品研究与开发, 2010, 31(11):167-171. HUANG Y H. Simulataneous determination of 18 phthalate acid esters migration in milk powder by solid phase extraction coupled with gas chromatography-mass spectrometry[J]. Food Research and Development Food Res Dev, 2010, 31(11):167-171(in Chinese).
[5] SWAN S H, MAIN K M, LIU F, et al. Decrease in anogenital distance among male infants with prenatal phthalate exposure[J]. Environmental Health Perspectives, 2005, 113(8):1056-1061. [6] SWAN S H. Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans[J]. Environmental Research, 2008, 108(2):177-184. [7] SINGH S, LI S S. Bisphenol A and phthalates exhibit similar toxicogenomics and health effects[J]. Gene, 2012, 494(1):85-91. [8] 周文敏. 环境优先污染物[M]. 北京:中国环境科学出版社, 1989. ZHOU W M. Environmental priority pollutants[M]. Beijing:China Environmental Science Press, 1989(in Chinese). [9] 金相灿. 有机化合物污染化学:有毒有机物污染化学[M]. 北京:清华大学出版社, 1990. JIN X C. Organic compounds pollution chemistry:toxic organic pollutants chemistry[M]. Beijing:Tsinghua University Press, 1990(in Chinese). [10] 朱媛媛, 田靖, 王伟, 等. 土壤中15种酞酸酯类化合物测定[J]. 中国环境监测, 2009, 25(2):79-83. ZHU Y Y, TIAN J, WANG W, et al. Determination of 15 kinds of phthalate in soil[J]. Environmental Monitoring in China, 2009, 25(2):79-83(in Chinese).
[11] 颜冬云, 蒋新, 赵振华, 等. 运用QSPR预测有机磷农药的色谱保留值[J]. 环境化学, 2006, 25(2):220-224. YAN D Y, JIANG X, ZHAO Z H, et al. Prediction of gas chromatographic retention times of organophosphorus pesticides by using qspr[J]. Environmental Chemistry, 2006, 25(2):220-224(in Chinese).
[12] 杨娜, 杨林. 多氯联苯分子空间坐标与气相色谱相对保留时间的QSPR研究[J]. 计算机与应用化学, 2012, 29(2):219-222. YANG N, YANG L. QSAR study for molecular coordinates and gas chromatographic relative retention time of polychlorinated biphenyls[J]. Computers and Applied Chemistry, 2012, 29(2):219-222(in Chinese).
[13] [14] 许惠英, 张建英, 王艳花, 等. 多溴联苯醚定量结构-性质关系的分子表面静电势应用研究[J]. 环境科学, 2008, 29(2):398-408. XU H Y, ZHANG J Y, WANG Y H, et al. QSPR studies on the physicochemical properties of polybrominated diphenyl ethersusing theoretical descriptors derived from electrostatic potentials on molecularsurface[J]. Environmental Science, 2008, 29(2):398-408(in Chinese).
[15] 高硕. 拓扑-量子键邻接矩阵的构建及其在有机物定量构效关系研究中的应用[D]. 长沙:中南大学, 2008. GAO S. QSPR The method of establishing topological-quantum bond adjacency matrix and its application in the QSPR/QSAR study for organic compounds[D]. Changsha:Central South University, 2008(in Chinese). [16] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. In:Gaussian 03, Revision B.03, Gaussian Inc., Pittsburgh PA, 2003. [17] WOLD S, SJOSTROMA M, ERIKSSON L. PLS-regression:a basic tool of chemometrics[J]. Chemometrics and Intelligent Laboratory Systems, 2001, 58(2):109-130. [18] WOLD S, SJOSTROMA M, ERIKSSON L. Cross-validatory estimation of the number of components in factor and principal components models[J]. Technometr, 1978, 20(4):397-405. [19] GOLBRAIKH A,TROPSHA A.Beware of q2![J]. Journal of Molecular Graphics and Modelling, 2002, 20(4):269-276. [20] HEMMATEENEJAD B. Optimal QSAR analysis of the carcinogenic activity of drugs by correlation ranking and genetic algorithm-based PCR[J]. Journal of Chemometrics, 2004, 18(11):475-485. [21] GRAMATICA P. Principles of QSAR models validation:internal and external[J]. QSAR & Combinatorial Science, 2007, 26(5):694-701. [22] GOLBRAIKH A, TROPSHA A. Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection[J]. Journal of Computer-Aided Molecular Design, 2000, 16(5):357-369. [23] DOS REIS R R, SAMPAIO S C, DE MELO E B. An alternative approach for the use of water solubility of nonionic pesticides in the modeling of the soil sorption coefficients[J]. Water Res, 2014, 53(53):191-199. [24] WOLD S. Exponentially weighted moving principal components analysis and projections to latent structures[J]. Chemometrics and Intelligent Laboratory Systems, 1994, 23(1):149-161. [25] VOET H V D. Comparing the predictive accuracy of models using a simple randomization test[J]. Chemometrics and Intelligent Laboratory Systems, 1994, 25(2):313-323. [26] CAMMARATA A. An apparent correlation between the in vitro activity of chloramphenicol analogs and electronic polarizability[J]. Journal of Medicinal Chemistry, 1967, 10(4):525-527. -

计量
- 文章访问数: 1330
- HTML全文浏览数: 1310
- PDF下载数: 45
- 施引文献: 0