抗性DNA在水土环境中的迁移归趋与水平转移
Transport, fate and horizontal transfer of antibiotic resistance DNA in soil and water environment
-
摘要: 抗性基因是与抗生素的滥用密切关联的一种新型环境污染物.DNA作为抗性基因的载体,其在环境中的赋存、迁移与水平转移对于环境中抗药性的传播十分重要.基于文献,本文针对与抗药性传播密切关联的各个环节,系统讨论了环境因子对DNA分子的损伤、保护和修复等影响DNA的赋存与归趋的机制,DNA吸附、解吸与迁移等影响其在环境中移动性的机制,以及水平转移等引发细菌产生抗药性的机制.文末提出了值得进一步研究的科学问题.Abstract: Antibiotic resistance gene (ARG) is an emerging environmental contaminant closely related to the abuse of antibiotics. DNA as a carrier of ARG, its occurrence, transport and horizontal transfer govern the spread of the ARG in the broad environment. This paper reviewed the literature related to the above processes and comprehensively discussed the environmental factors and mechanisms related to DNA occurrence and fate such as DNA damaging, protection and repair. DNA mobility such as adsorption, desorption and transport. Incurrence of antibiotic resistance such as horizontal transfer. In the end, scientific questions that merit further study were proposed.
-
Key words:
- DNA /
- antibiotic resistance genes (ARGs) /
- transport /
- protection /
- damaging /
- horizontal transfer
-
-
[1] YING G G, HE L Y, YING A J, et al. China must reduce its antibiotic use[J]. Environmental Science & Technology, 2017, 51(3):1072-1073. [2] QIAO M, YING G G, SINGER A C, et al. Review of antibiotic resistance in China and its environment[J]. Environment International, 2018,110:160-172. [3] CHEN Q L, LI H, ZHOU X Y, et al. An underappreciated hotspot of antibiotic resistance:The groundwater near the municipal solid waste landfill.[J]. Science of the Total Environment, 2017, 609:966-973. [4] TOLEMAN M A, BENNETT P M, BENNETT D M, et al. Global Emergence of Trimethoprim/Sulfamethoxazole Resistance in Stenotrophomonas maltophilia Mediated by Acquisition of sul Genes[J]. Emerging Infectious Diseases, 2007, 13(4):559-565. [5] ÉMILIE G, CAMBRAY G, SANCHEZ-ALBEROLA N, et al. The SOS Response Controls Integron Recombination[J]. Science, 2009, 324(5930):1034. [6] CARATTOLI A. Plasmids and the spread of resistance[J]. International Journal of Medical Microbiology Ijmm, 2013, 303(6-7):298-304. [7] 苏建强,黄福义,朱永官. 环境抗生素抗性基因研究进展[J].生物多样性,2013,21(4):481-487. SU J Q, HUANG F Y, ZHU Y G. Antibiotic resistance genes in the environment[J]. Biodiversity Science, 2013,21(4):481-487(in Chinese).
[8] 王双玲, 王礼, 周贺,等. 饮用水系统中抗生素抗性基因的研究进展[J]. 环境化学, 2017, 36(2):229-240. WANG S L,WANG Li,ZHOU He,et al.An overview on antibiotic resistance genes in drinking water systems[J].Environmental Chemistry,2017,36(2):229-240(in Chinese).
[9] YONG D, TOLEMAN M A, GISKE C G, ET AL. Characterization of a New Metallo-β-Lactamase Gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in klebsiella pneumoniae sequence type 14 from india[J]. Antimicrob Agents Chemother, 2009, 53(12):5046-5054. [10] PRUDEN A, PEI R, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants:Studies in northern Colorado[J]. Environmental Science & Technology, 2006, 40(23):7445-7450. [11] 周志男,雷海潮.2010年世界卫生报告综述[J].卫生经济研究,2011(2):3-5. ZHOU Z N,LEI H C.Review of world health report 2010 [J].Health Economics Research,2011(2):3-5(in Chinese).
[12] RAN T,GUANG G Y,HAO-C S. et al.Detection of antibiotic resistance and tetracycline resistance genes in enterobacteriaceae isolated from the pearl rivers in South China[J]. Environmental Pollution,2010,158(6):2102-2109. [13] SIYA R, VAJPAYEE,R L S,RISHI S. Surface water of a perennial river exhibits multi-antimicrobial resistant shiga toxin and enterotoxin producing Escherichia coli[J]. Ecotoxicology and Environmental Safety,2008,72(2):490-495. [14] GUNNARSDóTTIR R, JENSSEN P D, JENSEN P E, et al. A review of wastewater handling in the Arctic with special reference to pharmaceuticals and personal care products (PPCPs) and microbial pollution[J]. Ecological Engineering, 2013, 50(50):76-85. [15] GRAHAM D W, OLIVARESRIEUMONT S, KNAPP C W, et al. Antibiotic Resistance gene abundances associated with waste discharges to the Almendares River near Havana, Cuba[J]. Environmental Science & Technology, 2011, 45(2):418-424. [16] 邹世春, 朱春敬, 贺竹梅,等. 北江河水中抗生素抗性基因污染初步研究[J]. 生态毒理学报, 2009, 4(5):655-660. ZOU S C,ZHU C J,HE Z M,et al.Preliminary studies on the pollution levels of antibiotic resistance genes in the water of Beijiang River, South China[J]. Asian Journal of Ecotoxicology,2009,4(5):655-660(in Chinese).
[17] YAN G, VEILLETTE M, DUCHAINE C. Airborne bacteria and antibiotic resistance genes in hospital rooms[J]. Aerobiologia, 2010, 26(3):185-194. [18] LIS D O, PACHA J Z, IDZIK D. Methicillin resistance of airborne coagulase-negative staphylococci in homes of persons having contact with a hospital environment.[J]. American Journal of Infection Control, 2009, 37(3):177-182. [19] JI X, SHEN Q, LIU F, et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China[J]. Journal of Hazardous Materials, 2012, 235-236(20):178-185. [20] SEGAWA T, TAKEUCHI N, RIVERA A, et al. Distribution of antibiotic resistance genes in glacier environments[J]. Environmental Microbiology Reports, 2013, 5(1):127-134. [21] PEI R, KIM S C, CARLSON K H, et al. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG)[J]. Water Research, 2006, 40(12):2427-2435. [22] 施嘉琛, 胡建英, 常红,等. 北京温榆河流域耐药大肠杆菌的调查研究[J]. 中国环境科学, 2008, 28(1):39-42. SHI J C, HU J Y, CHANG H et al. Investigation on the antibiotic-resistance E.coli in Wenyu River in Beijing[J]. China Environmental Science, 2008, 28(1):39-42(in Chinese).
[23] CHEESANFORD J C, AMINOV R I, KRAPAC I J, et al. Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities[J]. Applied & Environmental Microbiology, 2001, 67(4):1494-1502. [24] [25] RYSZ M, ALVAREZ P J. Transport of antibiotic-resistant bacteria and resistance-carrying plasmids through porous media.[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2006, 54(11-12):363-370. [26] XING X J, LIU X G, HE Y, et al. Amplified Fluorescent Sensing of DNA Using Graphene Oxide and a Conjugated Cationic Polymer[J]. Biomacromolecules, 2013, 14(1):117-123. [27] 毛芳芳, 蒋伍玖, 李雪. 浅谈金属离子与DNA的相互作用[J]. 山东化工, 2017, 46(20):49-52. MAO F F,JIANG W J,LI X. A Brief Talk on the Interaction between Metal Ions and DNA[J]. Shandong Chemical Industry, 2017, 46(20):49-52(in Chinese).
[28] 吴尚荣, 金冰, 张楠,等. 一种不对称菁染料及其与不同结构DNA的相互作用[J]. 高等学校化学学报, 2014, 35(10):2085-2092. WU S R, JIN B, ZHANG N, et al.An asymmetric cyanine dye and its interaction with different structural DNA[J]. Chemical Journal of Chinese Universities, 2014, 35(10):2085-2092(in Chinese).
[29] MATSUMURA K, ENDO M, KOMIYAMA M. Lanthanide complex? oligo-DNA hybrid for sequence-selective hydrolysis of RNA[J]. Chemical Communications, 1994, 17(17):2019-2020. [30] KOMIYAMA M, TAKEDA N, SHIGEKAWA H. Hydrolysis of DNA and RNA by lanthanide ions:Mechanistic studies leading to new applications[J]. Chemical Communications, 1999, 16(16):1443-1451. [31] LIU J, HABEEBU S S, LIU Y, et al. Acute CdMT injection is not a good model to study chronic Cd nephropathy:Comparison of chronic CdCl2 and CdMT exposure with acute CdMT injection in rats[J]. Toxicology & Applied Pharmacology, 1998, 153(1):48-58. [32] 胡晓磐, 时夕金, 周建华. 重金属混合物对鲫淋巴细胞DNA损伤的研究[J]. 水生态学杂志, 2005, 25(1):11-12. HU X P, SHI X J, ZHOU J H. A Study on the Lymphocytes DNA Damage of crucian carp by heavy metal mixtures[J]. Journal of Hydroecology, 2005, 25(1):11-12(in Chinese).
[33] 宋婕, 王鹤潼, 崔伟娜,等. Cd胁迫诱导拟南芥幼苗DNA损伤分析[J]. 农业环境科学学报, 2017, 36(4):635-642. SONG J, WANG H T, CUI W N, et al. Analysis of Cd-induced DNA damage in Arabidopsis seedlings[J] Journal of Agro-Environment Science, 2017, 36(4):635-642(in Chinese).
[34] LIU J, LIU Y, HABEEBU S S, et al. Susceptibility of MT-Null Mice to chronic CdCl 2 -Induced nephrotoxicity indicates that renal injury is not mediated by the CdMT Complex[J]. Toxicological Sciences, 1998, 46(1):197-203. [35] 沈鹤柏, 夏静芬, 杨海峰,等. Ce离子水解断裂Oligomers DNA中磷酸二酯键[J]. 中国科学, 2001, 31(2):178-182. SHEN H B, XIA J F, YANG H F, et al. Phosphodiester bond in Oligomers DNA of Ce ion hydrolyzed[J]. Science In China, 2001,21(2):178-182(in Chinese).
[36] [37] LUO H, LU Y, SHI X, et al. Chromium (IV)-mediated fenton-like reaction causes DNA damage:Implication to genotoxicity of chromate.[J]. Annals of Clinical & Laboratory Science, 1996, 26(2):185-191. [38] O'BRIEN T, MANDEL H G, AND D E P, et al. Critical Role of Chromium (Cr)-DNA Interactions in the Formation of Cr-Induced polymerase arresting lesions[J]. Biochemistry, 2002, 41(41):12529-12537. [39] 肖经纬, 李斌, 钟才高. 六价铬致DNA损伤机制的研究进展[J]. 环境卫生学杂志, 2006, 33(2):97-100. XIAO J W, LI B, ZHONG C G.Research progress on the damaging mechanism of DNA by hexavalent chromium[J].Chinese Journal of Environmental Hygiene, 2006, 33(2):97-100(in Chinese).
[40] 张来军, 陈永敢, 杭瑜瑜. 重金属Cr(Ⅵ)、Pb及Cu胁迫对双齿围沙蚕体腔细胞的DNA损伤[J]. 生态毒理学报, 2017, 12(2):216-221. ZHANG L J, CHEN Y G, HAN Y Y. DNA damage of coelomocyte in Perinereis aibuhitensis induced by chromium(VI), lead and copper[J]. Asian Journal of Ecotoxicology, 2017,22(2):216-221(in Chinese).
[41] 张来军, 李晓梅, 陈永敢,等. 重金属胁迫对罗非鱼血细胞DNA损伤的影响[J]. 琼州学院学报, 2017,24(5):31-35. ZHANG L J, LI X M, CHEN Y D, et al.Effects of heavy metal stress on DNA damage in blood cells of tilapia[J].Jiongzhou University, 2017,24(5):31-35(in Chinese).
[42] YU Y, WANG P, CUI Y, et al. Chemical Analysis of DNA Damage[J]. Analytical Chemistry, 2017, 90(1):556-576. [43] 张建宏,吴丽颖,朱玲玲等.APE/Ref-1在氧化应激损伤中的作用[J].军事医学科学院院刊,2009,33(2):193-196. ZHANG J H, WU L Y, ZHU L L et al. The role of APE/Ref-1 in oxidative stress injury[J]. Academy of Military Medical Sciences, 2009, 33(2):193-196(in Chinese).
[44] 冉茂良,高环,尹杰,等.氧化应激与DNA损伤[J].动物营养学报,2013,25(10):2238-2245. YAN M L, GAO H, YIN J, et al. Oxidative stress and DNA damage[J]. Chinese Journal of Animal Nutrition, 2013, 25(10):2238-2245(in Chinese).
[45] PRAKASH S,JOHNSON RE,PRAKASH L.Eukaryotic translesion synthesis DNA polymerases:specificity of structure and function[J]. Annual Review of Biochemistry, 2005,74(74):317-353. [46] KHANNA K K, JACKSON S P. DNA double-strand breaks:Signaling, repair and the cancer connection.[J]. Nature Genetics, 2001, 27(3):247-254. [47] LIANG F Q,BERNARD F GODLEY. Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells:A possible mechanism for RPE aging and age-related macular degeneration[J]. Experimental Eye Research,2003,76(4):397-403. [48] SHOKOLENKO I, VENEDIKTOVA N, BOCHKAREVA A, et al. Oxidative stress induces degradation of mitochondrial DNA[J]. Nucleic Acids Research, 2009, 37(8):2539-2548. [49] DAVID WANG,DEBORAH A, KREUTZER,JOHN M, Essigmann. Mutagenicity and repair of oxidative DNA damage:insights from studies using defined lesions[J]. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis,1998,400(1):99-115. [50] 周新文, 朱国念, Jilisa Mwalilino,等. Cu、Zn、Pb、Cd及其混合重金属离子对鲫鱼(Carassius auratus)DNA甲基化水平的影响[J]. 中国环境科学, 2001, 21(6):549-552. ZHOU X W, ZHU G N, J MWALILINO, et al. Influence of Cu, Zn, Pb, Cd and their heavy metalion mixture on the DNA methylation level of the fish (Carassius auratus), 2001,21(6):549-552(in Chinese).
[51] 侯丽萍, 马广智. 镉与锌对草鱼种的急性毒性和联合毒性研究[J]. 淡水渔业, 2002, 32(3):44-46. HOU L P, MA G Z. Acute toxicity and joint toxicity of cadmium and zinc to grass carp species[J].Freshwater Fisheries, 2002, 32(3):44-46(in Chinese).
[52] LUO L, MENG H, GU J D. Microbial extracellular enzymes in biogeochemical cycling of ecosystems[J]. Journal of Environmental Management, 2017, 197:539-549. [53] WALLENSTEIN M D, WEINTRAUB M N. Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes[J]. Soil Biology & Biochemistry, 2008, 40(9):2098-2106. [54] HOPPE H G, ARNOSTI C. Ecological significance of bacterial enzymes in the marine environment[J]. Enzymes in the Environment, 2002:85-125. [55] MARXSEN J, FIEBIG D M. Use of perfused cores for evaluating extracellular enzyme activity in stream-bed sediments[J]. Fems Microbiology Ecology, 1993, 13(1):1-11. [56] ARNOSTI, GROSSART H P, MVHLING M, et al. Dynamics of extracellular enzyme activities in seawater under changed atmospheric pCO2:A mesocosm investigation[J]. Aquatic Microbial Ecology, 2011, 64(3):285-298. [57] ISTLA S A, SCHIMEL J P. Seasonal patterns of microbial extracellular enzyme activities in an arctic tundra soil:Identifying direct and indirect effects of long-term summer warming[J]. Soil Biology & Biochemistry, 2013, 66(11):119-129. [58] WEAVER L, WEBBER J B, HICKSON A C, ET AL. Biofilm resilience to desiccation in groundwater aquifers:A laboratory and field study[J]. Science of the Total Environment, 2015, 514:281-289. [59] MUDRYK Z J, SKÍRCZEWSKI P. Extracellular enzyme activity at the air-water interface of an estuarine lake[J]. Estuarine Coastal & Shelf Science, 2004, 59(1):59-67. [60] BARNES M A, TURNER C R, JERDE C L, et al. Environmental conditions influence eDNA persistence in aquatic systems.[J]. Environmental Science & Technology, 2014, 48(3):1819-1827. [61] TARAFDAR J C, JUNGK A. Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus[J]. Biology & Fertility of Soils, 1987, 3(4):199-204. [62] NANNIPIERI P, SEQUI P, FUSI P. Chapter 7-Humus and Enzyme Activity[M]. Humic Substances in Terrestrial Ecosystems, 1996:293-328. [63] MARINARI S, MASCIANDARO G, CECCANTI B, et al. Kinetics of acid phosphatase in calcium chloride extractable soil organic matter[J]. Soil Biology & Biochemistry, 2008, 40(9):2076-2078. [64] RAO M A, SCELZA R, ACEVEDO F, et al. Enzymes as useful tools for environmental purposes[J]. Chemosphere, 2014, 107:145-162. [65] PERRY M J. Alkaline phosphatase activity in subtropical Central North Pacific waters using a sensitive fluorometric method[J]. Marine Biology, 1972, 15(2):113-119. [66] NANNIPIERI P, GIAGNONI L, RENELLA G, et al. Soil enzymology:classical and molecular approaches[J]. Biology & Fertility of Soils, 2012, 48(7):743-762. [67] SHARIFIAN S, HOMAEI A, KIM S K, ET AL. Production of newfound alkaline phosphatases from marine organisms with potential functions and industrial applications[J]. Process Biochemistry, 201764(1):103-115. [68] 曹秀云, 宋春雷, 彭亮,等. 鱼类饲养对地下水中溶解态磷酸酶的影响[J]. 水生生物学报, 2004, 28(3):310-316. CAO X Y,SONG CH L,PENG L,et al. Effects of Fish Rearing on Dissolved Phosphatase in Groundwater[J].Journal of Aquatic Biology 2004, 28(3):310-316(in Chinese).
[69] 楼秀余.碱性磷酸酶异常在临床诊断中的作用[J]. 生物技术世界, 2015(1):142-142. LOU X Y. Role of alkaline phosphatase abnormality in clinical diagnosis[J]. Biotech World, 2015 (1):142-142(in Chinese).
[70] 刘晓红. 藻华生物参与有机物质水解代谢的几种胞外酶的生理学特性研究[D].广州:暨南大学, 2016. LIU X H. The study on physiological characteristics of ultracellular enzymes of harmful algal bloom species in the hydrolysis of organic matters[D].GuangZhou:Jinan University, 2016(in Chinese). [71] [72] BEZANILLA M, DRAKE B, NUDLER E, et al. Motion and enzymatic degradation of DNA in the atomic force microscope[J]. Biophysical Journal, 1994, 67(6):2454-2459. [73] 李铭峰. 耐辐射球菌中胞外核酸酶的研究[D].杭州:浙江大学, 2013. LI M F. Study on the extracellular nuclease in deinococcus radiodurans[D].HangZhou:Zhejiang University, 2013(in Chinese). [74] 洪华生, 戴民汉. 海水中碱性磷酸酶活力的测定及其在磷的循环中的作用初探[J]. 海洋与湖沼, 1992, 23(4):415-420. HONG H SH,DAI M H. Determination of alkaline phosphatase activity in seawater and its role in phosphorus cycle[J]. Oceanologia Et Limnologia Sinica, 1992, 23(4):415-420(in Chinese).
[75] 王佩, 陈凯, 高嵩.利用CpG DNA甲基化酶M.Sss共表达载体制备限制性内切酶NotⅠ[J]. 中国生物工程杂志, 2017, 37(8):51-58. WANG P,CHEN C,GAO H. Preparation of restriction endonuclease Not I using CpG DNA methylase M.Sss co-expression vector[J].China Biotechnology, 2017, 37(8):51-58(in Chinese).
[76] 邹国林. Ⅱ型限制性核酸内切酶的性质[J]. 生物学通报, 1985(10):28-30. ZOU G L. Nature of type Ⅱ restriction endonuclease[J].Bulletin of Biology, 1985 (10):28-30(in Chinese).
[77] 陈德风, 刘强, 赵西林,等.识别序列外DNA甲基化对限制性核酸内切酶PvuⅡ酶切活性影响的研究[J]. 中国生物化学与分子生物学报, 1996,12(1):36-41. CHEN D F, LIU Q, ZHAO X L, et al. Effect of unrecognitized sequence DNA methylation on the activity of restriction endonuclease Pvu Ⅱ enzyme[J]. Chinese Journal of Biochemistry and Molecular Biology,1996,12(1):36-41(in Chinese).
[78] 安志东.质粒pBR322的体外扩建以及有关限制性核酸内切酶图谱[J].遗传学报,1983,10(3):167-174. AN Z D. In vitro expansion of plasmid pBR322 and related restriction endonuclease maps[J].Journal of Genetics and Genomics,1983,10(03):167-174(in Chinese).
[79] 范云六, 姜书勤, 郭殿瑞,等.体外建成带有λ噬菌体DNA片段的重组质体[J]. 遗传学报,1979,6(1):29-35. FAN Y L,JIANG S Q,GUO D R, et al.In vitro construction of a recombinant plasmid containg pBR322 and lambda phage DNA segment[J]. Journal of Genetics And Genomics, 1979,6(3):29-35(in Chinese).
[80] 孙连魁,阮宏. BglⅠ限制性核酸内切酶与环状pBR322-DNA专一性和非专一性相互作用的动力学及热力学[J]. 中国生物化学与分子生物学报, 1990, 6(4):334-338. SUN L K,RUAN H. Kinetics and thermodynamics of the specific and non-specific interactions of restricted nucleic enzyme and annular pBR322-DNA[J]. Chinese Journal of Biochemistry and Molecular Biology, 1990, 6(4):334-338(in Chinese).
[81] 范丽君, 曲迪, 贾林芝,等. 三种抗氧化剂对氯化镉所致河蟹精子DNA损伤的保护作用[J]. 水产学报, 2007, 31(5):561-567. FAN L J, QU D, JIA L Z, et al. Protective effects of3 kinds of antioxidants on CdCl2-induced eriocheir sinensis sperm DNA damage[J]. Journal of Fisheries of China, 2007, 31(5):561-567(in Chinese).
[82] 王玉林. 禾谷镰刀菌丝/苏氨酸蛋白激酶SCH9基因的功能研究[D]. 咸阳:西北农林科技大学, 2011. WANG Y L. Functional characterization of the sch9 serine/threonine protein kinase in fusarium graminearum[D]. XianYang:Northwest Agriculture and Forestry University, 2011(in Chinese). [83] 侯雅琨. 粘土矿物/DNA界面反应特性及保护机理研究[D].广州:华南理工大学, 2014. HOU Y K. Interfacial reaction characteristic and protective mechanism between Clay minerals and DNA[D].GuangZhou:South China University of Technology, 2014(in Chinese). [84] 丁诚实. 纳米氧化铝引起裸耐药基因转移至大肠杆菌K12及其机制研究[D].济南:山东师范大学, 2016. DING C S. Study on naked drug resistance gene transfer to E.coli K12 by nano-Al2O3 [85] FOJTA M, DAňHEL A, HAVRAN L, et al. Recent progress in electrochemical sensors and assays for DNA damage and repair[J]. Trends in Analytical Chemistry, 2016, 79(5):160-167. [86] ABOLLINO O, ACETO M, MALANDRINO M, et al. Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances.[J]. Water Research, 2003, 37(7):1619-1627. [87] 王代长, 王慎阳, 蒋新,等. 可变电荷与恒电荷土壤胶体对DNA吸附与解吸特征[J]. 环境科学, 2009, 30(9):2761-2766. WANG D C, WANG S Y, JIANG X, et al. Characteristics of DNA adsorption and desorption in variable and constant charge soil colloids[J]. Environmental Science, 2009, 30(9):2761-2766(in Chinese).
[88] 王慎阳,饶伟,王代长,等.蒙脱土、高岭土和针铁矿对DNA吸附与解吸特征[J].环境科学,2012,33(5):1736-1743. WANG S Y, RAO W, WANG D C,et al. Characteristics of DNA adsorption and desorption in montmorillonite, kaoline and goethite[J]. Environmental Science, 2012,33(5):1736-1743(in Chinese).
[89] [90] KHANNA M, STOTZKY G. Transformation of Bacillus subtilis by DNA bound on montmorillonite and effect of DNase on the transforming ability of bound DNA.[J]. Applied & Environmental Microbiology, 1992, 58(6):1930-1939. [91] 韩卫娟. 沉香茶保护DNA氧化损伤的活性及其机制研究[D].广州:广州中医药大学,2013. HAN W J. Protective effect and mechanism of aloeswood tea against hydroxyl radical-induced DNA damage[D]. Guangzhou:Guangzhou University of Chinese Medicine, 2013(in Chinese). [92] GUO B, YUAN Y, WU Y, et al. Assay and analysis for anti-and pro-oxidative effects of ascorbic acid on DNA with the bulk acoustic wave impedance technique[J]. Analytical Biochemistry, 2002, 305(2):139-148(in Chinese). [93] 张明, 陈学存, 马爱国. 维生素E对DNA稳定的影响[J]. 中华临床营养杂志, 2003, 11(4):291-294. ZHANG M, CHEN X C, MA A G.Effect of vitamin E on DNA stability[J].Chinese Journal of Clinical Nutrition, 2003, 11(4):291-294(in Chinese).
[94] 赵磊,郝添阳,王旋,等.蛋白水解物对DNA和红细胞氧化损伤的保护作用[J].中国食品学报,2016,16(8):7-15. ZHAO L, HAO T Y, WANG X,et al.Protective Effect of Protein Hydrolysates against the Oxidative Damage on the DNA and the Red Cell[J]. Chinese Journal of Food Science, 2016,16(8):7-15(in Chinese).
[95] MORGAN A R, CONE R L, ELGERT T M. The mechanism of DNA strand breakage by vitamin C and superoxide and the protective role of catalase and superoxide dismutase[J]. Nucleic Acids Research, 1976, 3(5):1139-1149. [96] 刘润芝. 脱氧核糖核酸对机体内超氧化物岐化酶和过氧化物酶活性影响初步研究[J]. 激光生物学报, 2002, 11(2):119-121. LIU R Z. The Effect of Deoxyribonucleic Acid on the Activity of superoxide Dismutase and Peroxidase[J].Acta Laser Biologica Sinica, 2002, 11(2):119-121(in Chinese).
[97] PIETRAMELLAR G, FRANCHI M, GALLORI E, et al. Effect of molecular characteristics of DNA on its adsorption and binding on homoionic montmorillonite and kaolinite.[J]. Biology & Fertility of Soils, 2001, 33(5):402-409. [98] CAI P, HUANG Q, ZHANG X. Microcalorimetric studies of the effects of MgCl2, concentrations and pH on the adsorption of DNA on montmorillonite, kaolinite and goethite[J]. Applied Clay Science, 2006, 32(1):147-152. [99] 王志刚, 陈文晶, 胡影,等. DNA在黑土胶体微界面的吸附与解吸特性[J]. 农业环境科学学报, 2017, 36(10):2058-2062. WANG Z G, CHEN W J, HU Y, et al. Characteristics of DNA adsorption and desorption on micro-interfaces of black soil colloids[J].Journal of Agro-Environment Science, 2017, 36(10):2058-2062(in Chinese).
[100] SAEKI K, SAKAI M, WADA S I. DNA adsorption on synthetic and natural allophanes.[J]. Applied Clay Science, 2010, 50(4):493-497. [101] CAI P,HUANG QY,ZHANG XW,et al.Adsorption of DNA on clay minerals and various colloidal particles from an alfiso1.Soil Biology and Biochemistry,2006,38:471-476 [102] 廖敏, 谢晓梅, 方舒,等. 不同粒径红壤胶体颗粒对DNA的吸附特性[J]. 应用生态学报, 2013, 24(3):764-770. LIAO M, XIE X M, FANG S, et al. Characteristics of DNA adsorption on different sizes red soil colloidal particles[J].Chinese Journal of Applied Ecology, 2013, 24(3):764-770(in Chinese).
[103] FRANCHI M, FERRIS J P, GALLORI E. Cations as mediators of the adsorption of nucleic acids on clay surfaces in prebiotic environments[J]. Origins of Life & Evolution of the Biosphere, 2003, 33(1):1-16. [104] SAEKI K. The Comparison of Arsenite and Arsinate Adsorption on An Andosol[J]. Soil Science, 2008, 173(4):248-256. [105] ROMANOWSKI G, LORENZ M G, WACKERNAGEL W. Adsorption of plasmid DNA to mineral surfaces and protection against DNase I[J]. Applied & Environmental Microbiology, 1991, 57(4):1057-1061. [106] CAI P, ZHU J, HUANG Q, et al. Role of bacteria in the adsorption and binding of DNA on soil colloids and minerals[J]. Colloids & Surfaces B Biointerfaces, 2009, 69(1):26-30. [107] PIETRAMELLARA G, ASCHER J, BORGOGNI F, et al. Extracellular DNA in soil and sediment:Fate and ecological relevance[J]. Biology & Fertility of Soils, 2009, 45(3):219-235. [108] CRECCHIO C, RUGGIERO P, CURCI M, et al. Binding of DNA from, on Montmorillonite-Humic Acids-Aluminum or Iron Hydroxypolymers[J]. Soil Science Society of America Journal, 2005, 69(3):834-841. [109] CHEN C, LI J, DEVRIES S L, et al. Transport of antibiotic resistance plasmids in porous media[J]. Vadose Zone Journal, 2015, 14(3), doi:10.2136/vzj2014.06.0068. [110] POTÉ J, CECCHERINI M T, VAN V T, et al. Fate and transport of antibiotic resistance genes in saturated soil columns[J]. European Journal of Soil Biology, 2003, 39(2):65-71. [111] SHOGREN A J, TANK J L, ANDRUSZKIEWICZ E A, et al. Modelling the transport of environmental DNA through a porous substrate using continuous flow-through column experiments[J]. Journal of the Royal Society Interface, 2016, 13(119), doi:10.1098/rsif.2016.0290. [112] 罗义,周启星.抗生素抗性基因(ARGs)——一种新型环境污染物[J]..环境科学学报.2008,28(8):1499-1505. LUO Y, ZHOU Q X.Antibiotic resistance genes (ARGs) as emerging pollutants[J]. Acta Scientiae Circumstantiae. 2008,28(8):1499-1505(in Chinese).
[113] MARYURY B-J,WILLIAM CALERO-CÁCERES,MAITE MUNIESA. Transfer of antibiotic-resistance genes via phage-related mobile elements[J]. Plasmid,2015(79):1-7. [114] SZEKERES E, CHIRIAC C M, BARICZ A et al.Investigating antibiotics, antibiotic resistance genes, and microbial contaminants in groundwater in relation to the proximity of urban areas[J]. Environmental Pollution, 2018,236:734-744. [115] 杨凤霞,毛大庆,罗义,等.环境中抗生素抗性基因的水平传播扩散[J].应用生态学报,2013,24(10):2993-3002 YANG F X, MAO D Q, LUO Y, et al. Horizontal transfer of antibiotic resistance genes in the environment[J]. Chinese Journal of Applied Ecology.2013(10):2993-3002(in Chinese)
[116] 张俊亚, 魏源送, 陈梅雪,等. 畜禽粪便生物处理与土地利用全过程中抗生素和重金属抗性基因的赋存与转归特征研究进展[J]. 环境科学学报, 2015, 35(4):935-946. ZHANG J Y, WEI Y S, CHEN M X, et al. Occurrence and fate of antibiotic and heavy metal resistance genes in the total process of biological treatment and land application of animal manure:A review[J].Acta Scientiae Circumstantiae, 2015, 35(4):935-946(in Chinese).
[117] BOLAN N S, KHAN M A, DONALDSON J, et al. Distribution and bioavailability of copper in farm effluent[J]. Science of the Total Environment, 2003, 309(1-3):225-236. [118] NICHOLSON F A, SMITH S R, ALLOWAY B J, et al. An inventory of heavy metal input to agricultural soil in England and Wales[J]. Science of the Total Environment, 2003, 311(1-3):205-219. [119] MARTíNEZ J L, BAQUERO F, ANDERSSON D I. Predicting antibiotic resistance[J]. Nature Reviews Microbiology, 2007, 5(12):958-965. [120] BAKERAUSTIN, CRAIG, WRIGHT, et al. Co-selection of antibiotic and metal resistance[J]. Trends in Microbiology, 2006, 14(4):176-182. [121] BRUINS M R, KAPIL S, OEHME F W. Microbial resistance to metals in the environment.[J]. Ecotoxicology & Environmental Safety, 2000, 45(3):198-207. [122] 钱迪. 纳米二氧化钛对多重耐药质粒RP4接合转移的影响研究[D]. 合肥:安徽大学, 2013. QIAN D. Effect of TiO2 on the conjugative transfer of the RP4 plasmid[D]. HeFei:Anhui University, 2013 (in Chinese).
[123] 魏欣, 薛顺利, 杨帆,等. 零价铁对污泥高温厌氧消化过程中四环素抗性基因及第一类整合子的消减影响[J]. 环境科学, 2017, 38(2):697-702. WEI X, XUE S L, YANG F, et al. Effect of zero valent iron on the decline of tetracycline resistance genes and class 1 integrons during during thermophilic anaerobic digestion of sludge[J]. Environmental Science, 2017,38(2):697-702(in Chinese).
-

计量
- 文章访问数: 2335
- HTML全文浏览数: 2288
- PDF下载数: 236
- 施引文献: 0