日本消毒副产物及其前体物的现状及研究进展

李悦宁, 贺凯, 王婷, 赵博, 越后信哉, 林应超. 日本消毒副产物及其前体物的现状及研究进展[J]. 环境化学, 2018, 37(8): 1820-1830. doi: 10.7524/j.issn.0254-6108.2018022602
引用本文: 李悦宁, 贺凯, 王婷, 赵博, 越后信哉, 林应超. 日本消毒副产物及其前体物的现状及研究进展[J]. 环境化学, 2018, 37(8): 1820-1830. doi: 10.7524/j.issn.0254-6108.2018022602
LI Yuening, HE Kai, WANG Ting, ZHAO Bo, ECHIGO Shinya, LIN Yingchao. Trend and progress on disinfection byproducts and their precursors in Japan[J]. Environmental Chemistry, 2018, 37(8): 1820-1830. doi: 10.7524/j.issn.0254-6108.2018022602
Citation: LI Yuening, HE Kai, WANG Ting, ZHAO Bo, ECHIGO Shinya, LIN Yingchao. Trend and progress on disinfection byproducts and their precursors in Japan[J]. Environmental Chemistry, 2018, 37(8): 1820-1830. doi: 10.7524/j.issn.0254-6108.2018022602

日本消毒副产物及其前体物的现状及研究进展

  • 基金项目:

    天津市应用基础与前沿技术研究计划(青年项目)(15JCQNJC15200)和天津市科技支撑重点项目(16YFZCSF00410)资助.

Trend and progress on disinfection byproducts and their precursors in Japan

  • Fund Project: Supported by Natural Science Foundation of Tianjin-China (15JCQNJC15200)and Key Technologies R & D Program of Tianjin (16YFZCSF00410).
  • 摘要: 饮用水消毒是保证饮水安全的最重要措施,但是,消毒过程中产生的消毒副产物对人体健康存在潜在危害.日本在消毒副产物领域已开展了多年的深入研究.本文对日本在饮用水消毒副产物的种类、含量及消毒副产物前体物等方面的研究概况与饮水水质标准和前体物控制政策和技术方面的前沿情况进行了综述,并指出了未来可能需要关注的问题.
  • 加载中
  • [1] XIE Y. Disinfection byproducts in drinking water:Formation, analysis, and control[M]. Florida:Crc Press, 2016.
    [2] 王莹, 陈泽智, 李爱民,等. 13种新型极性苯酚类氯/溴代消毒副产物的生成机理[J]. 环境化学, 2017, 36(10):2089-2099.

    WANG Y, CHEN Z Z, LI A M. Formation mechanism of 13 new polar phenolic chlorinated and brominated disinfection byproducts in drinking water[J]. Environmental Chemistry, 2017, 36(10):2089-2099(in Chinese).

    [3] 付顺, 孙越. 碘代消毒副产物在净水工艺中的生成机制与控制措施[J]. 环境化学, 2016, 35(6):1153-1163.

    FU S, SUN Y. Formation mechanism and control measures of iodinated disinfection by-products in drinking water process[J]. Environmental Chemistry, 2016, 35(6):1153-1163(in Chinese).

    [4] 贾立明, 陈鑫, 林楠,等. 固相萃取-气质联用法测定饮用水中亚硝胺类消毒副产物[J]. 环境化学, 2016, 35(6):1325-1328.

    JIA L M, CHEN X, LIN N, et al. Determination of degassing accessory substance of nitroamines in drinking water by solid phase extraction and GC-MS[J]. Environmental Chemistry, 2016, 35(6):1325-1328(in Chinese).

    [5] 周亚男, 王芬, 李亚静,等. 饮用水中九种卤乙酰胺的高效液相色谱-三重四极杆质谱测定方法[J]. 环境化学, 2017, 36(3):614-620.

    ZHOU Y N, WANG F, LI Y J, et al. Determination of nine haloacetamides in drinking water using high performance liquid chromatography-triple quadropole mass spectrometry[J]. Environmental Chemistry, 2017, 36(3):614-620(in Chinese).

    [6] 陈文文, 张原, 李小水,等. 水中N-亚硝胺的富集及色谱分析测试技术[J]. 环境化学, 2016, 35(10):2117-2126.

    CHEN W W, ZHANG Y, LI X S, et al. Preconcentration and chromatographic technologies for the analysis of N-nitrosamines in water[J]. Environmental Chemistry, 2016, 35(10):2117-2126(in Chinese).

    [7] 刘则华, 佘沛阳, 韦雪柠,等. 日本最新饮用水水质标准及启示[J]. 中国给水排水, 2016, 32(8):8-10.

    LIU Z H, SHE P Y, WEI X N, et al. New drinking water standards in japan and discussions[J]. China Water &Wastewater, 2016, 32(8):8-10(in Chinese).

    [8] 伊藤禎彦, 越後信哉. 水の消毒副生成物[M]. 東京都:技報堂出版, 2008. ITOH S, ECHIGO S. Disinfection byproduct in water[M]. Tokyo:GIHODO SHUPPAN Co., 2008(in Japanese).
    [9] World Health Organization. Guidelines for drinking-water quality[J]. WHO Chronicle, 2011, 38(4):104-108.
    [10] 鄂学礼, 王丽, 邢方潇. 饮水消毒副产物及其标准研究进展[J]. 环境与健康杂志, 2010, 27(1):2-4.

    E X L, WANG L, XING F X. Research advance of disinfection by-products and standard limits in drinking water[J]. Journal of Environmental Health, 2010, 27(1):2-4(in Chinese).

    [11] EPA. National primary drinking water regulations[EB/OL].[2018-3-23]. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#Byproducts)
    [12] ASAMI M, OYA M, KOSAKA K. A nationwide survey of NDMA in raw and drinking water in Japan[J]. Science of the Total Environment, 2009, 407(11):3540-3545.
    [13] WEI J, YE B, WANG W, et al. Spatial and temporal evaluations of disinfection by-products in drinking water distribution systems in Beijing, China.[J]. Science of the Total Environment, 2010, 408(20):4600-4606.
    [14] 古川浩司, 川口寿之, 工藤清惣, 等. LC/MS/MSによる水道水中の塩素酸分析法[J], 環境科学会誌, 2017, 30:365-372. FURUKAWA K, KAWAGUCHI T, KUDO K, et al. Determination of chloric acid in drinking water by LC/MS/MS[J], Environmental Science, 2017

    , 30:365-372(in Japanese).

    [15] 小坂浩司, 浅見真理, 大久保慶子, 等. ミックスモードカラムを用いた液体クロマトグラフタンデム質量分析計による水道水中の臭素酸イオンとハロ酢酸類の一斉分析法の検討[J]. 水道協会雑誌, 2017, 86(2):2-12.

    KOSAKA K, ASAMI M, OKUBO K. Simultaneous analysis of bromate and haloacetic acids in drinking water using liquid chromatography coupled to tandem mass spectrometry with a Mix-Mode column[J]. Journal of Japan Water Work Association, 2017, 86(2):2-12(in Japanese).

    [16] 梁锡念, 黄隽, 何伦发, 等. 2013-2016年某市市政供水出厂水消毒副产物监测结果分析[J]. 环境卫生学杂志, 2017, 7(4):284-290.

    LIANG X N, HUANG J, HE L F, et al. Analysis on levels of disinfection byproducts in municipal water supplies of a city in 2013-2016[J]. Journal of Environmental Hygiene, 2017, 7(4):284-290(in Chinese).

    [17] ANDERSSON A, ASHIQ M J, SHOEB M, et al. Evaluating gas chromatography with a halogen-specific detector for the determination of disinfection by-products in drinking water[J]. Environmental Science and Pollution Research, 2018(4):1-10.
    [18] 栃本博, 小杉有希, 立石恭也, 等. 小笠原村父島の浄水場における帯磁性イオン交換樹脂処理による水道水質の改善[J]. 水環境学会誌, 2017, 40(3):153-165.

    TICHIMOTO H, KOSUGI Y, TATEISHI Y, et al. Improvement of water quality using a magnetic ion exchange resin at drinking water treatment plant on chichijima island in ogasawara village[J]. Journal of Japan Society on Water Environment, 2017, 40(3):153-165(in Japanese).

    [19] 栃本博, 小杉有希, 猪又明子, 等. 小笠原諸島の浄水場の処理過程におけるハロ酢酸とトリハロメタンの挙動[J]. 水環境学会誌, 2007, 30(7):387-395.

    TICHIMOTO H, KOSUGI Y, INOMATA A, et al. Behaviors of haloacetic acids and trihalomethanes in the water purification process at ogasawara islands[J]. Journal of Japan Society on Water Environment. 2007, 30(7):387-395(in Japanese).

    [20] 栃本博, 小杉有希, 小西浩之, 等. 小笠原諸島の水道原水の水質-消毒副生成物生成能を中心として[J]. 水環境学会誌, 2010, 33(11):181-191.

    TICHIMOTO H, KOSUGI Y, KONISHI H, et al. Quality of raw water for drinking-water supply on the ogasawara islands-focusing on formation potentials of disinfection by-products[J]. Journal of Japan Society on Water Environment, 2010, 33(11):181-191(in Japanese).

    [21] 栃本博, 小杉有希, 小輪瀬勉. 島しょの水道水中の有機ハロゲン化消毒副生成物(生活環境に関する調査研究)[J]. 東京都健康安全研究センター研究年報, 2008(59):261-269. TICHIMOTO H, KOSUGI Y, KOWASE T. Halogenated disinfection by-products in tap water in the islands[J], Tokyo. Annual report of Tokyo Metropolitan Institute of Public Health, 2008

    (59):261-269(in Japanese).

    [22] PLEWA M J, KARGALIOGLU Y, VANKERK D, et al. Mammalian cell cytotoxicity and genotoxicity analysis of drinking water disinfection by-products[J]. Environmental and Molecular Mutagenesis, 2002, 40(2):134-142.
    [23]
    [24] 深瀬勝己, 平林達也. ヨウ素化合物の浄水処理過程における実態及び挙動に関する調査[J], 大阪市水道局水質試験所調査研究ならびに試験成績,2015, 66:48-51. FUKASE K, HIRABAYASHI T. Behavior of iodine compounds in the water purification process[J]. Annual Report of Water Examination Laboratory of Osaka Municipal Waterworks Bureau. 2015

    , 66:48-51(in Japanese).

    [25] SIRAKI A G, CHAN T S, O'BRIEN P J. Application of quantitative structure-toxicity relationships for the comparison of the cytotoxicity of 14 p-benzoquinone congeners in primary cultured rat hepatocytes versus PC12 cells[J]. Toxicological Sciences, 2004, 81(1):148-159.
    [26] 中井喬彦, 小坂浩司, 浅見真理, 等. LC-MS/MS法による水道水中の 2, 6-ジクロロ-1, 4-ベンゾキノンの測定法検討と実態調査[J]. 水環境学会誌, 2015, 38(3):67-73.

    NAKAI T, KOSAKA K, ASAMI M, et al. Analysis and Occurrence of 2,6-Dichloro-1,4-benzoquinone in drinking water by liquid chromatography-tandem mass spectrometry[J]. Journal of Japan Society on Water Environment. 2015, 38(3):67-73(in Japanese).

    [27] KOSAKA K, OHKUBO K, AKIBA M. Occurrence and formation of haloacetamides from chlorination at water purification plants across Japan[J]. Water research, 2016, 106:470-476.
    [28] IMAi A, FUKUSHIMA T, MATSUSHIGE K, et al. Fractionation and characterization of dissolved organic matter in a shallow eutrophic lake, its inflowing rivers, and other organic matter sources[J]. Water Research, 2001, 35(17):4019-4028.
    [29] 栃本博, 小杉有希, 鈴木俊也, 等. 小笠原諸島の水道原水中の溶存有機物の特性と浄水場における特性変化[J]. 水環境学会誌, 2014, 37(3):79-90.

    TOCHIMOTO H, KOSUGI Y, SUZUKI T, et al. Characteristics of dissolved organic matter in raw water in the ogasawara islands and their variation in water treatment plants[J]. Journal of Japan Society on Water Environment. 2014, 37(3):79-90(in Japanese).

    [30] 永井健一, 青木眞一, 布施泰朗, 等. 琵琶湖·淀川水系河川水中におけるトリハロメタン前駆物質としての溶存有機物質の分画[J]. 分析化学, 2005, 54(9):923-928.

    NAGAI K, AOKI S, FUSE Y, et al. Fractionation of dissolved organic matter (DOM) as precursors of trihalomethane in Lake Biwa and Yodo Rivers[J]. BUNSEKI KAGAKU. 2005, 54(9):923-928(in Japanese).

    [31] 今井章雄. 第21回琵琶湖研究シンポジウム講演要旨集[J]. 2003(12):200.
    [32] CHEN C, ZHANG X, ZHU L, et al. Disinfection by-products and their precursors in a water treatment plant in North China:seasonal changes and fraction analysis[J]. Science of the Total Environment, 2008, 397(1-3):140-147.
    [33] JUNG C W, SON H J. The relationship between disinfection by-products formation and characteristics of natural organic matter in raw water[J]. Korean Journal of Chemical Engineering, 2008, 25(4):714-720.
    [34] MARHABA T F, VAN D. The variation of mass and disinfection by-product formation potential of dissolved organic matter fractions along a conventional surface water treatment plant[J]. Journal of Hazardous Materials, 2000, 74(3):133-147.
    [35] SAKAI H, TOKUHARA S, MURAKAMI M, et al. Comparison of chlorination and chloramination in carbonaceous and nitrogenous disinfection byproduct formation potentials with prolonged contact time[J]. Water Research, 2016, 88:661-670.
    [36] 越後信哉, 矢野雄一, 徐育子, 等. 溶存有機物を構成する化学構造からのハロ酢酸生成特性[J]. 環境工学研究論文集, 2007, 44:265-273. ECHIGO S, YANO Y, JO I, et al. Formation characteristics of haloacetic acids from common chemical structures in dissolved organic matter during chlorination[J]. Environmental Engineering Research. 2007

    , 44:265-273(in Japanese).

    [37] BOND T, GOSLAN E. H, Parsons S. A, et al. A critical review of trihalomethane and haloacetic acid formation from natural organic matter surrogates[J]. Environmental Technology Reviews, 2012, 1(1):93-113.
    [38] GE F, TANG F, XU Y, et al. Formation characteristics of haloacetic acids from phenols in drinking water chlorination[J]. Water Science and Technology:Water Supply, 2014, 14(1), 142-149.
    [39] BOND T, GRAHAM N. Predicting chloroform production from organic precursors[J]. Water Research, 2017, 124:167-176.
    [40] THURMAN E M. Organic geochemistry of natural waters[M]. Dordrecht:Springer Science & Business Media, 2012.
    [41] KOSAKA K, NAKAI T, HISHIDA Y, et al. Formation of 2, 6-dichloro-1, 4-benzoquinone from aromatic compounds after chlorination[J]. Water Research, 2017, 110:48-55.
    [42] KOSAKA K, ASAMI M, NAKAI T, et al. Formaldehyde formation from tertiary amine derivatives during chlorination[J]. Science of the Total Environment, 2014, 488:325-332.
    [43] 小林憲弘, 杉本直樹, 久保田領志,等. ホルムアルデヒド水質汚染の原因物質の特定に至る経緯と水道水中の未規制物質の管理における今後の課題[J]. 日本リスク研究学会誌, 2013, 23(2):65-70.

    KOBAYASHI N, SUGIMOTO N, KUBOTA R, et al. Identification of the cause of formaldehyde water pollution and the future issues on the management of unregulated chemicals in drinking water[J]. Japanese Journal of Risk Analysis, 2013, 23(2):65-70(in Japanese).

    [44] VAN HUY N, MURAKAMi M, SAKAI H, et al. Occurrence and formation potential of N-nitrosodimethylamine in ground water and river water in Tokyo[J]. Water Research, 2011, 45(11):3369-3377.
    [45] KOSAKA K, ASAMI M, OHKUBO K, et al. Identification of a new N-nitrosodimethylamine precursor in sewage containing industrial effluents[J]. Environmental Science & Technology, 2014, 48(19):11243-11250.
    [46] KOSAKA K, ASAMI M, OHKUBO K, et al. Determination of a N-nitrosodimethylamine precursor in water using ultra-high performance liquid chromatography–tandem mass spectrometry[J], Analytical Sciences, 2015, 31:769-772.
    [47] KOSAKA K, ASAMI M, KONNO Y, et al. Identification of antiyellowing agents as precursors of N-nitrosodimethylamine production on ozonation from sewage treatment plant influent[J]. Environmental Science & Technology, 2009, 43(14):5236-5241.
    [48] KOSAKA K, FUKUI K, KAYANUMA Y, et al. N-Nitrosodimethylamine formation from hydrazine compounds on ozonation[J]. Ozone Science & Engineering, 2014, 36(3):215-220.
    [49] YOON S, TANAKA H. Formation of N-nitrosamines by chloramination or ozonation of amines listed in Pollutant Release and Transfer Registers (PRTRs)[J]. Chemosphere, 2014, 95:88-95.
    [50] SHEN R, ANDREWS S. A. Demonstration of 20 pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors during chloramine disinfection[J]. Water Research, 2011, 45(2), 944-952.
    [51]
    [52] KOSAKA K, IWATANI A, TAKEICHI Y, et al. Removal of haloacetamides and their precursors at water purification plants applying ozone/biological activated carbon treatment[J]. Chemosphere, 2018, 198:68-74.
    [53] WANG F, GAO B, YUE Q, et al. Effects of ozonation, powdered activated carbon adsorption, and coagulation on the removal of disinfection by-product precursors in reservoir water.[J]. Environmental Science & Pollution Research, 2017, 24(21):17945-17954.
    [54] NAKAMURA H, OYA M, HANAMOTO T, et al. Reviewing the 20 years of operation of ozonation facilities in hanshin water supply authority with respect to water quality improvements[J]. Ozone Science & Engineering, 2017, 39(6):397-406.
    [55] CHIANG P C, CHANG E E, CHANG P C, et al. Effects of pre-ozonation on the removal of THM precursors by coagulation[J]. Science of the Total Environment, 2009, 407(21):5735-5742.
    [56] 蔡广强, 卢小艳, 张金松,等. O3-BAC深度处理工艺对有机物及三氯乙醛生成潜能的去除[J]. 给水排水, 2017,53(12):35-40.

    CAI G Q, LU X Y, ZHANG J S, et al. Removal of organic matter and chloral hydrate formation potential by O3-BAC advanced treatment process[J]. Geomatics World, 2017,53(12):35-40(in Chinese).

  • 加载中
计量
  • 文章访问数:  1428
  • HTML全文浏览数:  1374
  • PDF下载数:  212
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-02-26
  • 刊出日期:  2018-08-15
李悦宁, 贺凯, 王婷, 赵博, 越后信哉, 林应超. 日本消毒副产物及其前体物的现状及研究进展[J]. 环境化学, 2018, 37(8): 1820-1830. doi: 10.7524/j.issn.0254-6108.2018022602
引用本文: 李悦宁, 贺凯, 王婷, 赵博, 越后信哉, 林应超. 日本消毒副产物及其前体物的现状及研究进展[J]. 环境化学, 2018, 37(8): 1820-1830. doi: 10.7524/j.issn.0254-6108.2018022602
LI Yuening, HE Kai, WANG Ting, ZHAO Bo, ECHIGO Shinya, LIN Yingchao. Trend and progress on disinfection byproducts and their precursors in Japan[J]. Environmental Chemistry, 2018, 37(8): 1820-1830. doi: 10.7524/j.issn.0254-6108.2018022602
Citation: LI Yuening, HE Kai, WANG Ting, ZHAO Bo, ECHIGO Shinya, LIN Yingchao. Trend and progress on disinfection byproducts and their precursors in Japan[J]. Environmental Chemistry, 2018, 37(8): 1820-1830. doi: 10.7524/j.issn.0254-6108.2018022602

日本消毒副产物及其前体物的现状及研究进展

  • 1.  南开大学环境科学与工程学院, 天津, 300071;
  • 2.  日本京都大学工学研究科附属流域圈综合环境质研究中心, 滋贺县大津市, 5200811, 日本;
  • 3.  日本国立保健医疗科学院, 埼玉县和光市, 3510197, 日本
基金项目:

天津市应用基础与前沿技术研究计划(青年项目)(15JCQNJC15200)和天津市科技支撑重点项目(16YFZCSF00410)资助.

摘要: 饮用水消毒是保证饮水安全的最重要措施,但是,消毒过程中产生的消毒副产物对人体健康存在潜在危害.日本在消毒副产物领域已开展了多年的深入研究.本文对日本在饮用水消毒副产物的种类、含量及消毒副产物前体物等方面的研究概况与饮水水质标准和前体物控制政策和技术方面的前沿情况进行了综述,并指出了未来可能需要关注的问题.

English Abstract

参考文献 (56)

返回顶部

目录

/

返回文章
返回