不同水分管理下施用尿素对土壤镉污染钝化修复效应及微生物结构与分布影响
Effects of urea on in-situ remediation of Cd polluted paddy soil and the structure and distribution of soil microbes under different water management
-
摘要: 通过水稻盆栽实验,开展了全生育期淹水灌溉和湿润灌溉二种水分管理模式条件下,施用不同量尿素对土壤镉污染钝化修复效应及微生物结构与分布影响研究.结果表明,海泡石钝化修复下,淹水灌溉和湿润灌溉处理时,施用不同量尿素对土壤中0.025 mol·L-1HCl浸提态Cd含量无明显影响;但二乙基三胺五乙酸浸提态Cd含量均显著性降低.与海泡石单一钝化处理相比,淹水灌溉和湿润灌溉下海泡石钝化处理时,施用不同量尿素可使水稻根系铁氧化物胶膜中的Fe含量分别降低39.61%—55.59%和22.51%—53.63%.淹水管理下施用尿素对水稻根膜吸附土壤中Cd有抑制作用,而湿润管理下施用尿素对水稻根膜吸附土壤中Cd有激活作用.淹水灌溉和湿润灌溉下海泡石钝化处理时,施用不同量尿素可使水稻根系中的Cd含量分别增加36.11%—71.30%和58.20%—89.42%,水稻根系中还原型谷胱甘肽活性则分别降低30.82%—41.97%和13.47%—62.36%.淹水灌溉下海泡石钝化处理时,施用不同量尿素可以降低水稻根系中非蛋白巯基化合物含量,降幅可达13.02%—29.54%;但在湿润灌溉下海泡石钝化处理时并无明显影响.与海泡石单一钝化处理相比,淹水灌溉下钝化处理时,施用低量尿素和中量尿素时可使糙米中Cd含量分别增加28.89%和8.89%,而施用高量尿素时则使糙米中Cd含量降低22.22%;湿润灌溉下钝化处理时,施用低量尿素、中量尿素和高量尿素时糙米Cd含量与海泡石单一处理间并无明显差异.土壤微生物的非加权组平均法和主成分分析表明,实验条件下的钝化处理不会对土壤中微生物的结构与分布产生明显影响.Abstract: Pot experiments were conducted to investigate the effects of urea on in-situ remediation of Cd polluted paddy soil under different water management. The experimental results showed that with flooded and non-flooded water management, urea addition did not change the exchangeable Cd concentration by 0.025 mol·L-1 HCl significantly under the immobilization remediation of sepiolite, but it decreased the exchangeable Cd content by diethylenetriaminepentaacetic acid leaching significantly. Compared with the immobilization remediation of sepiolite, the Fe concentration of dithionite-citrate-bicarbonate leach liquor after urea addition was decreased by 39.61%-55.59% and 22.51%-53.63% under flooded and non-flooded management, respectively. Urea had a positive effect on soil Cd adsorption by root iron plaque under the flooded management, but have a negative effect under the non-flooded management. The Cd concentration of root was increased by 36.11%-71.30% and 58.20%-89.42% in the two water management, and the reduced glutathione concentration was decreased by 30.82%-41.97% and 13.47%-62.36%, respectively. The non-protein thiol concentration was decreased by 13.02%-29.54% after adding urea under flooded management, but had no significant change in non-flooded management. Under flooded management, adding low and medium dosage urea increased the Cd concentration in brown rice, but the concentration decreased after adding high dosage urea. The Cd concentration did not change significantly after adding different dosage urea under non-flooded water management. Unweighted pair-group method with arithmetic means and principal component analysis were used to analyze the soil microbial biomass. The results showed that immobilization remediation had no obvious influence on soil microbial structure and distribution under different experimental conditions.
-
Key words:
- soil /
- cadmium pollution /
- sepiolite /
- immobilization remediation /
- urea /
- water management
-
-
[1] 环境保护部, 国土资源部.全国土壤污染状况调查公报[R]. 中国环保产业, 2014, 5:10-11. Ministry of Environmental Protection, Ministry of land and resources of China[R]. National Survey of Soil Pollution Bulletin. Beijing. 2014 , 5:10-11(in Chinese).
[2] 顾继光, 林秋奇, 胡韧, 等. 土壤-植物系统中重金属污染的治理途径及其研究展望[J]. 土壤通报, 2005, 36(1):128-133. GU J G, LIN Q Q, HU R, et al. Heavy metals pollution in soil-plant ssytem and its research prospect[J]. Chinese Journal of Soil Science, 2005, 36(1):128-133(in Chinese).
[3] 纪雄辉, 梁永超,鲁艳红, 等. 污染稻田水分管理对水稻吸收积累镉的影响及其作用机理[J]. 生态学报, 2007, 27(9):3930-3039. JI X H, LIANG Q C, LU Y H, et al. The effect of water management on the mechanism and rate of up take and Accumulation of cadmium by rice growing in polluted paddy soil[J].Acta Ecologica Sinica, 2007, 27(9):3930-3039(in Chinese).
[4] 张丽娜, 宗良纲, 付世景, 等. 水分管理方式对水稻在Cd污染土壤上生长及其吸收Cd的影响[J]. 安全与环境学报, 2006, 6(5):49-52. ZHANG L N, ZONG L G, FU S J, et al. Effects of water control on rice growth and its intake of cadmium on Cd contaminated soil[J].Journal of Safety and Environment, 2006, 6(5):49-52(in Chinese).
[5] 邓林, 李柱, 吴龙华, 等. 水分及干燥过程对土壤重金属有效性的影响[J]. 土壤, 2014, 46(6):1045-1051. DENG L, LI Z, WU L H, et al. Influence of moisture and drying process on soil heavy metal availability[J]. Soils, 2014, 46(6):1045-1051(in Chinese).
[6] LIANG X F, HAN J, XU Y M, et al. In situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite[J]. Geoderma, 2014, 235-236:9-18. [7] LIANG X F, XU Y, XU Y M, et al. Two-year stability of immobilization effect of sepiolite on Cd contaminants in paddy soil[J]. Environmental Science and Pollution Research, 2016, 23(13):12922-12931. [8] 孙约兵, 王朋超, 徐应明, 等. 海泡石对镉-铅复合污染钝化修复效应及其土壤环境质量影响研究[J]. 环境科学, 2014, 35(12):4720-4726. SUN Y B, WANG P C, XU Y M, et al. Immobilization remediation of Cd and Pb contaminated soil:Remediation potential and soil environmental quality[J]. Environmental Science, 2014, 35(12):4720-4726(in Chinese).
[9] 李剑睿, 徐应明, 林大松, 等. 水分调控和钝化剂处理对水稻土镉的钝化效应及其机理[J]. 农业环境科学学报, 2014, 33(7):1316-1321. LI J R, XU Y M, LIN D S, et al. Immobilization of cadmium in a paddy soil using moisture management and amendments[J].Journal of Agro-Environment Science, 2014, 33(7):1316-1321(in Chinese).
[10] 孙国红, 李剑睿, 徐应明, 等.不同水分管理下镉污染红壤钝化修复稳定性及其对氮磷有效性的影响[J]. 农业环境科学学报, 2015, 34(11):2105-2113. SUN G H, LI J R, XU Y M, et al. Effects of water management on cadmium stability and nitrogen and phosphorus availability in cadmium polluted red soil after immobilization remediation[J]. Journal of Agro-Environment Science, 2015, 34(11):2105-2113(in Chinese).
[11] 胡坤, 喻华, 冯文强, 等. 不同水分管理方式下3种中微量元素肥料对水稻生长和吸收镉的影响[J]. 西南农业学报, 2010, 23(3):772-776. HU K, YU H, FENG W Q, et al. Effects of water management methods and three and micro element on rice growth and cadmium uptake[J]. Southwest China Journal of Agricultural Sciences, 2010, 23(3):772-776(in Chinese).
[12] KASHEM M A, SINGH B R. Metal availability in contaminated soils. Ⅱ. Uptake of Cd, Ni and Zn in rice plants grown under flooded culture with organic matter addition[J]. Nutrient Cycling in AgroecoSsytems, 2001, 61(3):257-266. [13] YANG M, WANG H Y, ZHOU J M,et al. Effects of appling nitrogen fertilizers on transformation of external cadmium in the paddy soil with different soil moisture[J]. Journal of Agro-Environment Science, 2006, 25(5):1202-1207. [14] 梁佩筠,许超,吴启堂,等. 淹水条件下控释氮肥对污染红壤中重金属有效性的影响[J]. 生态学报, 2013, 33(9):2919-2929. LIANG P J, XU C, WU Q T, et al. Effect of different controlled-release nitrogen fertilizers on availability of heavy metals in contaminated red soils under waterlogged conditions[J]. Acta Ecologica Sinica, 2013, 33(9):2919-2929(in Chinese).
[15] 甲卡拉铁, 喻华, 冯文强, 等. 淹水条件下不同氮磷钾肥对土壤pH和镉有效性的影响研究[J]. 环境科学, 2009, 30(11):3414-3421. JIA K T, YU H, FENG W Q, et al. Effect of different N, P and K fertilizers on soil pH and available Cd under waterlogged conditions[J]. Environmental Science, 2009, 30(11):3414-3421(in Chinese).
[16] 周细红, 曾清如, 蒋朝辉, 等. 尿素施用对土壤pH值和模拟温室箱内NH3和NO2浓度的影响[J]. 土壤通报, 2004, 35(3):374-376. ZHOU X H, ZENG Q R, JIANG Z H, et al. Effects of Urea on Soil pH and the Accumulation of NH3 and NO2 in a simulative greenhouse[J]. Chinese Journal of Soil Science, 2004, 35(3):374-376(in Chinese).
[17] 鲁如坤, 时正元, 赖庆旺. 红壤养分退化(Ⅱ)-尿素和碳铵在红壤中的转化[J]. 土壤通报, 1995, 26(6):241-243. LU R K, SHI Z Y, LAI Q W. Red soil nutrient degradation (Ⅱ)-urea and producyion transformation in red soil[J]. Chinese Journal of Soil Science, 1995, 26(6):241-243(in Chinese).
[18] 杨锚, 王火焰, 周健民, 等. 不同水分条件下几种氮肥对水稻土中外源镉转化的动态影响[J]. 农业环境科学学报, 2006, 25(5):1202-1207. YANG M, WANG H Y, ZHOU J M, et al. Effects of appling nitrogen fertilizer s on transformation of external cadmium in the paddy soil with different soil moisture[J].Journal of Agro-Environment Science, 2006, 25(5):1202-1207(in Chinese).
[19] 肖振林,王果,黄瑞卿,等. 酸性土壤中有效态镉提取方法研究[J]. 农业环境科学学报, 2008, 27(2):795-800. XIAO Z L, WANG G, HUANG R Q, et al. Extraction method for available cadmium in acid soils[J].Journal of Agro-Environment Science, 2008, 27(2):795-800(in Chinese).
[20] TAYLOR G J, CROWDER A A. Use of the DCB technique for extraction of hydrous iron oxides from roots of wetland plants[J]. American Journal of Botany, 1983, 8:1254-1257. [21] TOMMASI F, PACIOLLA C, PINTO M C D. A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds[J]. Journal of Experimental Botany, 2001, 361:1647-1654. [22] JIAO S, LIU Z, LIN Y, YANG J, et al. Bacterial communities in oil contaminated soils:Biogeography and co-occurrence patterns[J]. Soil Biology & Biochemistry, 2016, 98, 64-73. [23] 甲卡拉铁, 喻华, 冯文强, 等. 氮肥品种和用量对水稻产量和镉吸收的影响研究[J]. 中国生态农业学报, 2010, 18(2):281-285. JIAKA La-Tie, YU Hua1, FENG Wen-Qiang, et al. Effect of nitrogen fertilizer type and application rate on cadmium uptake and grain yield of paddy rice[J]. Chinese Journal of Eco-Agriculture, 2010, 18(2):281-285(in Chinese).
[24] LIU H, ZHANG J, CHRISTIE P et al. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil[J]. Science of the Total Environment, 2008, 2(3):361-368. [25] 徐亚平, 刘凤枝, 蔡彦明, 等. 土壤中铅镉有效态提取剂的选择[J]. 监测分析, 2005, 22(4):46-48. XU Yaping, LIU Fengzhi, CAI yanming, et al. The selection of available cadmium and lead extractants in contaminated soil[J]. Monitoring and Analysis, 2005, 22(4):46-48(in Chinese).
[26] 甘国娟,刘妍,朱晓龙, 等. 3种提取剂对不同类型土壤重金属的提取效果[J]. 中国农学通报, 2013, 29(2):148-153. Gan Guojuan, Liu Yan, Zhu Xiaolong, et al. The Extraction efficiency of three extracting agents for heavy metals in different types of soil[J]. Chinese Agricultural Science Bulletin, 2013, 29(2):148-153(in Chinese).
[27] 徐奕, 李剑睿, 徐应明, 等. 膨润土钝化与不同水分灌溉联合处理对酸性稻田土镉污染修复效应及土壤特性的影响[J]. 环境化学, 2017, 36(5):1026-1035. XU Y, LI J R, XU Y M, et al. Effects of bentonite combined with different water management on immobilization remediation and soil properties of cadmium contaminated paddy soils[J]. Environmental Chemistry, 2017, 36(5):1026-1035(in Chinese).
[28] 孔妤, 王忠, 孔蕴洁, 等. 植物根内通气组织形成的研究进展[J]. 植物学通报, 2008, 25(2):248-253. KONG Y, WANG Z, KONG W J, et al. Research progress on aerenchyma formation in plant roots[J].Chinese Bulletin of Botany, 2008, 25(2):248-253(in Chinese).
[29] 李奕林. 水稻根系通气组织与根系泌氧及根际硝化作用的关系[J]. 生态学报, 2012, 32(7):2066-2074. LI Y L. Relationship among rice root aerechyma,root radial oxygen loss and rhizosphere nitrification[J]. Acta Ecologica Sinica, 2012, 32(7):2066-2074(in Chinese).
[30] 王凯, 郭蕾蕾, 刘文, 等. 水胁迫下转基因水稻抗坏血酸-谷胱甘肽循环系统的变化[J]. 江苏农业科学, 2011, 39(2):111-114. WANG K, GOU L L, LIU W, et al. Changes of Ascorbate-Glutathione circulating cystem in transgenic rice under water stress[J]. Jiangsu Agricultural Sciences, 2011, 39(2):111-114(in Chinese).
[31] 徐强. 不同基因型水稻耐镉的生理响应机制研究[D]. 四川:四川农业大学, 2014. XU Q. Physiological responses of different rice (Oryza sativa L.) genotypics under cadmium stress[D]. Sichuan Agriculture University, 2014(in Chinese). [32] YI T H, KAO C H. Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxide accumulation[J]. Plant and Soil, 2007, 298(1/2):231-241. [33] JIANG J, QIN C, SHU X, CHEN R, et al. Effects of copper on induction of thiol-compounds and antioxidant enzymes by the fruiting body of Oudemansiella radicata[J]. Ecotoxicology & Environmental Safety, 2015, 111:60-65. [34] LEE S H, LEE J S, CHOI Y J, et al. In situ stabilization of cadmium-, lead-,and zinc-contaminated soil using various amendments[J]. Chemosphere, 200977:1069-1075. [35] SUN Y B, SUN G H, XU Y M, et al. Evaluation of the effectiveness of sepiolite, bentonite, and phosphate amendments on the stabilization remediation of cadmiumcontaminated soils[J]. Journal of Environmental Management,2016, 166:204-210. -

计量
- 文章访问数: 1681
- HTML全文浏览数: 1637
- PDF下载数: 330
- 施引文献: 0