分散液液微萃取-能量色散X射线荧光光谱法测定环境水样中的痕量铜

姜晨阳, 潘飞, 庄旭明, 田宇纮, 邬旭然. 分散液液微萃取-能量色散X射线荧光光谱法测定环境水样中的痕量铜[J]. 环境化学, 2017, 36(8): 1795-1801. doi: 10.7524/j.issn.0254-6108.2016122303
引用本文: 姜晨阳, 潘飞, 庄旭明, 田宇纮, 邬旭然. 分散液液微萃取-能量色散X射线荧光光谱法测定环境水样中的痕量铜[J]. 环境化学, 2017, 36(8): 1795-1801. doi: 10.7524/j.issn.0254-6108.2016122303
JIANG Chenyang, PAN Fei, ZHUANG Xuming, TIAN Yuhong, WU Xuran. Determination of trace copper in environmental water samples by dispersive liquid-liquid microextraction and energy dispersive X-ray fluorescence spectroscopy[J]. Environmental Chemistry, 2017, 36(8): 1795-1801. doi: 10.7524/j.issn.0254-6108.2016122303
Citation: JIANG Chenyang, PAN Fei, ZHUANG Xuming, TIAN Yuhong, WU Xuran. Determination of trace copper in environmental water samples by dispersive liquid-liquid microextraction and energy dispersive X-ray fluorescence spectroscopy[J]. Environmental Chemistry, 2017, 36(8): 1795-1801. doi: 10.7524/j.issn.0254-6108.2016122303

分散液液微萃取-能量色散X射线荧光光谱法测定环境水样中的痕量铜

  • 基金项目:

    国家自然科学基金(21575122)资助.

Determination of trace copper in environmental water samples by dispersive liquid-liquid microextraction and energy dispersive X-ray fluorescence spectroscopy

  • Fund Project: Supported by the National Natural Science Foundation of China (21575122).
  • 摘要: 本文采用分散液液微萃取(DLLME)技术来分离富集环境水样中痕量铜,结合薄样技术,利用能量色散-X射线荧光光谱仪(ED-XRF)对其进行检测.实验以二乙基二硫代氨基甲酸钠(DDTC)为螯合剂,对萃取剂、分散剂的种类及体积、螯合剂的用量、pH值、萃取时间等影响实验萃取效率的因素进行了优化,得出在50μL四氯化碳,0.4 mL甲醇,pH=8,DDTC质量分数为0.03%,萃取时间3 min的条件下进行实验,萃取效率最佳.实验采用内标法进行定量,检出限为0.08μg·L-1,对两种实际样品进行6次平行检测,相对标准偏差(RSD)分别为3.1%和3.3%,加标回收率为97%-105%.因此本方法适用于环境水样中铜含量的检测.
  • 加载中
  • [1] VARDIA H K, RAO P S, DURVE V S. Effect of copper, cadmium and zinc on fish-food organisms, Daphnia lumholtzi, and Cypris subglobosa[J]. Proceedings:Animal Sciences, 1988, 97(2):175-180.
    [2] DUPUY P, USCIATI M. The use of copper in destroying typhoid organisms, and the effects of copper on man[J]. Journal of the Franklin Institute, 1905, 160(6):463-470.
    [3] 孙清斌, 尹春芹, 邓金锋,等.大冶矿区土壤-蔬菜重金属污染特征及健康风险评价[J]. 环境化学, 2013, 32(4):671-677.

    SUN Q B,YIN C Q,DENG J F, et al. Characteristics of heavy metal pollution and health risk assessment of soil-vegetables in Daye mining area[J]. Environmental Chemistry, 2013, 32(4):671-677(in Chinese).

    [4] EISLER R. Copper hazards to fish, wildlife, and invertebrates:A synoptic review[J]. Center for Integrated Data Analytics Wisconsin Science Center, 1998, 85(25):11-15.
    [5] FARAJZADEH M A, BAHRAM M, MEHR B G, et al. Optimization of dispersive liquid-liquid microextraction of copper by atomic absorption spectrometry as its oxinate chelate:Application to determination of copper in different water samples[J]. Talanta, 2008, 75(3):832-840.
    [6] REZAEE M, ASSADI Y, MILANI HOSSEINI M R, et al. Determination of organic compounds in water using dispersive liquid-liquid microextraction[J]. Journal of Chromatography A, 2006, 1116(12):1-9.
    [7] WEN X, YANG Q, YAN Z, et al. Determination of cadmium and copper in water and food samples by dispersive liquid-liquid microextraction combined with UV-vis spectrophotometry[J]. Microchemical Journal, 2011, 97(2):249-254.
    [8] 闫相伊, 韩翔, 王进义.常见金属离子检测新方法研究进展[J]. 陕西农业科学,2016,62(2):79-82.

    YAN X Y, HAN X, WANG J Y. Research progress on new methods of common metal ions detection[J].Shanxi Journal of Agricultural Sciences,2016,62(2):79-82(in Chinese).

    [9] 彭杨,吴婧, 巢静波,等.土壤/沉积物中14种金属元素的ICP-MS准确测定方法[J]. 环境化学, 2017,36(1):175-181.

    PENG Y,WU Q,CHAO J B, et al. Determination of 14 kinds of metal elements in soil/sediments by ICP-MS method[J]. Environmental Chemistry,2017,36(1):175-181(in Chinese).

    [10] 赵志南, 严冬, 何群华,等. ICP-MS测定《全国土壤污染状况详查》 项目中14种元素[J]. 环境化学, 2017,36(2):448-452.

    ZHAO Z N, YAN D, HE Q H, et al. Determination of 14 Elements in "National Soil Pollution Survey" by ICP-MS[J]. Environmental Chemistry,2017,36(2):448-452(in Chinese).

    [11] 王晓军.分散液液微萃取-电感耦合等离子体质谱联用技术在痕量金属元素分析中的应用[D]. 杭州:浙江工业大学,2015. WANG X J. Application of dispersive liquid-liquid microextraction coupled with inductively coupled plasma-mass spectrometry in the separation and preconcentration of trace metal elements[D]. Hangzhou:Zhejiang University of Technology,2015(in Chinese).
    [12] 徐鉴, 邵阳, 张翠玲.分散液液微萃取-分光光度法测定水中痕量铜[J]. 应用化工,2015,44(2):371-373.

    XU J, SHAO Y, ZHANG C L. Determination of trace copper in water by spectrophotometry with dispersive liquid-liquid microextraction[J]. Applied Chemical Industry,2015,44(2):371-373(in Chinese).

    [13] 陈飞.分散液液微萃取浮动溶剂固化——原子吸收光谱法测定环境水体样品中的重金属[J]. 福建分析测试, 2012,21(2):6-10.

    CHEN F. Dispersive liquid-liquid microextraction based on the solidification of floating organic drop followed by combined with atomic absorption spectrometry as a fast technique for the simultaneous determination of heavy metals ions[J].Fujian Analysis & Testing,2012,21(2):6-10(in Chinese).

    [14] BROWN R J C, JARVIS K E, DISCH B A, et al. Comparison of ED-XRF and LA-ICP-MS with the European reference method of acid digestion-ICP-MS for the measurement of metals in ambient particulate matter[J]. Accreditation and Quality Assurance, 2010, 15(9):493-502.
    [15] 邬旭然, 韩晓锋, 王丽,等.薄样技术-能量色散X射线荧光光谱法测定钯铂金[J]. 冶金分析, 2013, 33(10):34-39.

    WU X R,HAN X F,WANG L, et al. Determination of palladium, platinum and gold by energy dispersive X-ray fluorescence spectrometry with thin sample technology[J].Metallurgical Analysis,2013,33(10):34-39(in Chinese).

    [16] 郝晓雯, 张龙, 杜莉谢,等. XRF法测定雪松松针及花粉中的无机元素[J]. 烟台大学学报自然科学与工程版, 2016, 29(1):22-27.

    HAO X W,ZHANG L,DU L X,et al. Determination of Inorganic Elements in Pine Needles and Pine Pollen of Cedrus Deodara by XRF[J]. Journal of Yantai University (Natural Science and Engineering Edition),2016, 29(1):22-27(in Chinese).

    [17] 陈远盘.X射线荧光光谱分析中的薄样法[J].分析试验室, 1986,5(3):38-44.

    CHEN Y P. Thin sample method in X-ray fluorescence spectrometry[J].Analytical Laboratory,1986,5(3):38-44(in Chinese).

    [18] WEN X, YANG Q, YAN Z, et al. Determination of cadmium and copper in water and food samples by dispersive liquid-liquid microextraction combined with UV-vis spectrophotometry[J]. Microchemical Journal, 2011, 97(2):249-254.
    [19] HEMMATKHAH P, BIDARI A, JAFARVAND S, et al. Speciation of chromium in water samples using dispersive liquid-liquid microextraction and flame atomic absorption spectrometry[J]. Microchimica Acta, 2009, 166(1):69-75.
    [20] DADFARNIA S, SHABANI A M H, NOZOHOR M. Dispersive Liquid-Liquid Microextraction-Solidified Floating Organic Drop Combined with Spectrophotometry for the Speciation and Determination of Ultratrace Amounts of Selenium[J]. Journal of the Brazilian Chemical Society, 2013, 25(2):229-237.
    [21] MARGUÍ E, FLOOR G H, HIDALGO M, et al. Analytical possibilities of total reflection X-ray spectrometry (TXRF) for trace selenium determination in soils[J]. Analytical Chemistry, 2010, 82(18):7744-7751.
    [22] MAO X, CHEN H, LIU J. Determination of Trace Amount of Silver by Atomic-Absorption-Spectrometry-Coupled Flow Injection On-Line Coprecipitation Preconcentration Using DDTC-Copper as Coprecipitate Carrier[J]. Microchemical Journal, 1998, 59(3):383-391.
    [23] CAMAGONG C T, HONJO T. Use of dicyclohexano-18-crown-6 to separate traces of silver(I) from potassium thiocyanate in hydrochloric acid media, and determination of the silver by atomic absorption spectrometry[J]. Analytical and Bioanalytical Chemistry, 2002, 373(8):856-862.
    [24] TUZEN M, SOYLAK M. Column solid-phase extraction of nickel and silver in environmental samples prior to their flame atomic absorption spectrometric determinations[J]. Journal of Hazardous Materials, 2009, 164(23):1428-1432.
    [25] SHEMIRANI F, KOZANI R R, ASSADI Y. Development of a cloud point extraction and preconcentration method for silver prior to flame atomic absorption spectrometry[J]. Microchimica Acta, 2007, 157(1):81-85.
    [26] MANZOORI J L, ABDOLMOHAMMAD-ZADEH H, AMJADI M. Ultra-trace determination of silver in water samples by electrothermal atomic absorption spectrometry after preconcentration with a ligand-less cloud point extraction methodology[J]. Journal of Hazardous Materials, 2007, 144(12):458-463.
    [27] MOHAMMADI S Z, AFZALI D, TAHER M A, et al. Ligandless dispersive liquid-liquid microextraction for the separation of trace amounts of silver ions in water samples and flame atomic absorption spectrometry determination[J]. Talanta, 2009, 80(2):875-879.
  • 加载中
计量
  • 文章访问数:  889
  • HTML全文浏览数:  848
  • PDF下载数:  392
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-12-23
  • 刊出日期:  2017-08-15

分散液液微萃取-能量色散X射线荧光光谱法测定环境水样中的痕量铜

  • 1. 烟台大学化学化工学院, 烟台, 264005
基金项目:

国家自然科学基金(21575122)资助.

摘要: 本文采用分散液液微萃取(DLLME)技术来分离富集环境水样中痕量铜,结合薄样技术,利用能量色散-X射线荧光光谱仪(ED-XRF)对其进行检测.实验以二乙基二硫代氨基甲酸钠(DDTC)为螯合剂,对萃取剂、分散剂的种类及体积、螯合剂的用量、pH值、萃取时间等影响实验萃取效率的因素进行了优化,得出在50μL四氯化碳,0.4 mL甲醇,pH=8,DDTC质量分数为0.03%,萃取时间3 min的条件下进行实验,萃取效率最佳.实验采用内标法进行定量,检出限为0.08μg·L-1,对两种实际样品进行6次平行检测,相对标准偏差(RSD)分别为3.1%和3.3%,加标回收率为97%-105%.因此本方法适用于环境水样中铜含量的检测.

English Abstract

参考文献 (27)

目录

/

返回文章
返回