太原市春季大气PM25中水溶性离子在线观测分析

李永麒, 张国斌. 太原市春季大气PM25中水溶性离子在线观测分析[J]. 环境化学, 2017, 36(8): 1777-1784. doi: 10.7524/j.issn.0254-6108.2016120205
引用本文: 李永麒, 张国斌. 太原市春季大气PM25中水溶性离子在线观测分析[J]. 环境化学, 2017, 36(8): 1777-1784. doi: 10.7524/j.issn.0254-6108.2016120205
LI Yongqi, ZHANG Guobin. Continuous online observation analysis of water-soluble ions in PM2.5 from the atmosphere in spring in Taiyuan[J]. Environmental Chemistry, 2017, 36(8): 1777-1784. doi: 10.7524/j.issn.0254-6108.2016120205
Citation: LI Yongqi, ZHANG Guobin. Continuous online observation analysis of water-soluble ions in PM2.5 from the atmosphere in spring in Taiyuan[J]. Environmental Chemistry, 2017, 36(8): 1777-1784. doi: 10.7524/j.issn.0254-6108.2016120205

太原市春季大气PM25中水溶性离子在线观测分析

Continuous online observation analysis of water-soluble ions in PM2.5 from the atmosphere in spring in Taiyuan

  • 摘要: 为系统反映太原市春季PM2.5中无机水溶性离子的特征,采用在线气体/气溶胶监测仪(Marga)分析了太原市2016年3月1日至5月31日期间PM2.5中无机水溶性离子的变化情况,研究表明二次离子(SO42-、NO3-、NH4+)是无机水溶性离子的主要组成部分,它们在监测期间的均值分别为13.7 μg·m-3、14.7 μg·m-3以及10.4 μg·m-3,整个观测期间三者的浓度之和(SNA)占总无机水溶性离子值的百分数为81.0%,占PM2.5百分数为68.5%.三者浓度的日变化特征均呈单峰的形式存在,NO3-变化略有不同.热力学研究表明,由于NH4NO3分解平衡常数(Ke)与观测期间NH3 与HNO3的浓度积(Km)的不同,导致了不同监测期间NO3-浓度变化不一致.观测期间硫氧化率(SOR)和氮氧化率(NOR)的值都大于0.1,说明太原市大气气溶胶中硫酸盐和硝酸盐主要都是经过转化形成的二次污染物.在典型空气污染过程中,SO42-、NO3-、NH4+与能见度、相对湿度的变化有很好的对应关系,说明太原市低能见度与二次离子的生成有关.
  • 加载中
  • [1] WATSON J G. Visibility:Science and regulation[J]. Journal of the Air & Waste Management Association, 2002, 52(6):628-713.
    [2] 廖碧婷,吴兑,常越,等. 广州地区SO42-、NO3-、NH4+与相关气体污染特征研究[J]. 环境科学学报,2014,34(6):1551-1559.

    LIAO B T, WU D, CHANG Y, et al. Characteristics of particulate SO42-, NO3-, NH4+ and related gaseous pollutants in Guangzhou[J]. Acta Scientiae Circumstantiae, 2014, 34(6):1551-1559(in Chinese).

    [3] 寿幼平,高晓梅,王静,等. 济南秋季大气PM2.5中水溶性离子的在线观测[J]. 环境科学研究,2010,23(1):41-47.

    SHOU Y P, GAO X M, WANG J, et al. Online measurement of water-solube ions in fine paticles from the atmosphere in autumn in Jinan[J]. Research of Environmental Sciences, 2010, 23(1):41-47(in Chinese).

    [4] 何俊杰,吴耕晨,张国华,等. 广州雾霾期间气溶胶水溶性离子的日变化特征及形成机制[J]. 中国环境科学,2014,34(5):1107-1112.

    HE J J, WU G C, ZHANG G H, et al. Diurnal variation and formation mechanisms of water-soluble inorganic ions in aerosols during a haze-fog period in Guangzhou[J]. China Environmental Science, 2014, 34(5):1107-1112(in Chinese).

    [5] 高晓梅. 我国典型地区大气PM2.5水溶性离子的理化特征及来源解析[D]. 济南:山东大学,2012. GAO X M. Characterization and sources of PM2.5 water-soluble ions in typical areas in China[D]. Jinan:Shandong University, 2012

    (in Chinese).

    [6] 杨素霞,曹军骥,沈振兴,等. 西安冬、夏季PM2.5中水溶性无机离子的变化特征[J]. 环境化学,2012,31(8):1179-1188.

    YANG S X, CAO J J, SHEN Z X, et al. Variations of water-soluble ions in PM2.5 at Xi'an between summer and winter[J]. Environmental Chemistry, 2012, 31(8):1179-1188(in Chinese).

    [7] 狄一安,杨勇杰,周瑞,等. 北京春季城区与远郊区不同大气粒径颗粒物中水溶性离子的分布特征[J]. 环境化学,2013,32(9):1604-1610.

    DI Y A, YANG Y J, ZHOU R, et al. Size distributions of water-soluble inorganic ions at urban and rural sites in Beijing during spring[J]. Environmentsl Chemistry, 2013, 32(9):1604-1610(in Chinese).

    [8] 刀谞,朱红霞,谭丽,等. 2014年APEC期间北京及周边重点城市PM2.5中水溶性离子变化特征[J]. 环境化学,2015, 34(8):1389-1395.

    DAO X, ZHU H X, TAN L, et al. Variations of PM2.5 and its water soluble ions in Beijing and surrounding cities during the APEC in 2014[J]. Environmentsl Chemistry, 2015, 34(8):1389-1395(in Chinese).

    [9] 孟琛琛,王丽涛,张芬芬,等. 邯郸市PM2.5中水溶性无机离子污染特征及来源解析[J]. 环境科学学报,2015,35(11):3443-3451.

    MENG C C, WANG L T, ZHANG F F, et al. Pollution characteristics and source apportionment of water-soluble inorganic ions in PM2.5 in Handan City[J]. Acta Scientiae Circumstantiae, 2015, 35(11):3443-3451(in Chinese).

    [10] 韩月梅,沈振兴,曹军骥,等. 西安市大气颗粒物中水溶性无机离子的季节变化特征[J]. 环境化学,2009,28(2):261-266.

    HAN Y M, SHEN Z X, CAO J J, et al. Seasonal variations of water-soluble inorganic ions in atmospheric particles over Xi'an[J]. Environmental Chemistry, 2009, 28(2):261-266(in Chinese).

    [11] 古金霞,吴丽萍,霍光耀,等. 天津市PM2.5中水溶性无机离子污染特征及来源分析[J]. 中国环境监测,2013,29(3):30-34.

    GU J X, WU L P, HUO G Y, et al. Pollution character and source of water-soluble inorganic ions in PM2.5 over Tianjin[J]. Environmental Monitoring in China, 2013, 29(3):30-34(in Chinese).

    [12] 邱天雪,陈进生,尹丽倩,等. 闽南重点城市春季PM2.5中水溶性无机离子特征研究[J]. 生态环境学报,2013,22(3):512-516.

    QIU T X, CHEN J S, YIN L Q, et al. Study on the characteristics of water-soluble inorganic ions in PM2.5 in spring in the key cities of southern Fujian province[J]. Ecology and Environmental Sciences, 2013, 22(3):512-516(in Chinese).

    [13] 李彩霞,李彩亭,曾光明,等. 长沙市夏季PM10与PM2.5中水溶性离子的污染特征[J]. 中国环境科学,2007,27(5):599-603.

    LI C X, LI C T, ZENG G M, et al. Pollution characteristics of water-soluble ions in atmospheric PM10 and PM2.5 in Changsha City in summer[J]. China Environmental Science, 2007, 27(5):599-603(in Chinese).

    [14] 刘江海,褚彦辛,赵雪艳,等. 忻州市PM2.5与PM10中水溶性离子季节污染特征及来源分析[J]. 南开大学学报,2015,48(4):103-111.

    LIU J H, ZHU Y X, ZHAO X Y, et al. Seasonal distribution and source analysis of water-soluble inorganic ions in PM10 and PM2.5 of Xinzhou City[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2015, 48(4):103-111(in Chinese).

    [15] TAO J, ZHANG L M, ENGLING G, et al. Chemical composition of PM2.5 in an urban environment in Chengdu, China:Importance of springtime dust storms and biomass burning[J]. Atmospheric Research, 2013, 122:270-283.
    [16] YAO X H, CHAN C K, FANG M, et al. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China[J]. Atmospheric Environment, 2002, 36:4223-4234.
    [17] 高璟赟,董海燕,陈魁,等. APEC会议期间天津市PM2.5中水溶性无机离子的污染特征[J]. 环境污染与防治,2015,37(5):66-71.

    GAO J Y, DONG H Y, CHEN K, et al. Characteristics of water-soluble inorganic ions in PM2.5 of Tianjin during the Asia-Pacific Economic Cooperation summit[J]. Environmental Pollution and Control, 2015, 37(5):66-71(in Chinese).

    [18] WANG Y, ZHUANG G S, TAGN A H, et al. The ion chemistry and the source of PM2.5 aerosol in Beijing[J]. Atmospheric Enviroment, 2005, 39:3771-3784.
    [19] OHTA S, OKITA T. A chemical characterization of atmospheric aerosol in Sapporo[J]. Atmospheric Enviroment, 1990, 24(4):815-822.
    [20] SHON Z H, KIM K H, SONG S K, et al. Relationship between water-solube ions in PM2.5 and their precursor gases in Seoul megacity[J]. Atmospheric Environment, 2012, 59(7):540-550.
    [21] YUE D L, ZHONG L J, ZHANG T, et al. Pollution properties of water-soluble secondary inorganic ions in atmospheric PM2.5 in the Pearl River Delta Region[J]. Aerosol and Air Quality Research, 2015, 15:1737-1747.
    [22] WANG Y, ZHUANG G S, ZHANG X Y, et al. The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai[J]. Atmospheric Environment, 2006, 40:2935-2952.
    [23] KANG C M, LEE H S, KANG B W, et al. Chemical characteristics of acidic gas pollutants and PM2.5 species during hazy episodes in Seoul, South Korea[J]. Atmospheric Enviroment, 2004, 38(28):4749-4760.
    [24] YIN L Q, NIU Z C, CHEN X Q, et al. Characteristics of water-soluble inorganic ions in PM2.5 and PM2.5-10 in the coastal urban agglomeration along the Western Taiwan Strait Region, China[J]. Environmetal Science & Pollution Research, 2014, 21(7):5141-5156.
    [25] HU G Y, ZHANG Y M, SUN J Y, et al. Variability, formation and acidity of water-soluble ions in PM2.5 in Beijing based on the semi-continuous observations[J]. Atmospheric Research, 2014, (145-146):1-11.
    [26] STELSON A W, SEINFELD J H. Thermodynamic prediction of the water activity, NH4NO3 dissociation-constant, density and refractive index for the NH4NO3-(NH4)2SO4-H2O system at 25℃[J].Atmospheric Environment, 1982, 16(10):2507-2514.
    [27] MOZURKEWICH M. The dissociation constant of ammonium nitrate and its dependence on temperature, relative-humidity, and particle size[J]. Atmospheric Environment, 1993, 27:261-270.
  • 加载中
计量
  • 文章访问数:  979
  • HTML全文浏览数:  918
  • PDF下载数:  402
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-12-02
  • 刊出日期:  2017-08-15

太原市春季大气PM25中水溶性离子在线观测分析

  • 1. 太原市环境监测中心站, 太原, 030002

摘要: 为系统反映太原市春季PM2.5中无机水溶性离子的特征,采用在线气体/气溶胶监测仪(Marga)分析了太原市2016年3月1日至5月31日期间PM2.5中无机水溶性离子的变化情况,研究表明二次离子(SO42-、NO3-、NH4+)是无机水溶性离子的主要组成部分,它们在监测期间的均值分别为13.7 μg·m-3、14.7 μg·m-3以及10.4 μg·m-3,整个观测期间三者的浓度之和(SNA)占总无机水溶性离子值的百分数为81.0%,占PM2.5百分数为68.5%.三者浓度的日变化特征均呈单峰的形式存在,NO3-变化略有不同.热力学研究表明,由于NH4NO3分解平衡常数(Ke)与观测期间NH3 与HNO3的浓度积(Km)的不同,导致了不同监测期间NO3-浓度变化不一致.观测期间硫氧化率(SOR)和氮氧化率(NOR)的值都大于0.1,说明太原市大气气溶胶中硫酸盐和硝酸盐主要都是经过转化形成的二次污染物.在典型空气污染过程中,SO42-、NO3-、NH4+与能见度、相对湿度的变化有很好的对应关系,说明太原市低能见度与二次离子的生成有关.

English Abstract

参考文献 (27)

目录

/

返回文章
返回