玉米芯生物炭吸附水中对硝基苯酚的特性
Adsorption characteristics of p-nitrophenol in aqueous solution by corncob biochar
-
摘要: 以玉米芯为原料制备玉米芯生物炭(CCBC),探讨其对水中对硝基苯酚(PNP)的吸附特性,同时运用扫描电镜、傅里叶红外光谱、比表面积仪和元素分析对生物炭的理化性质进行表征,考察了溶液pH值和生物炭投加量对CCBC吸附PNP的影响.结果表明,在溶液pH值在2.0-11.0范围内,随着溶液pH值的升高,CCBC对PNP的吸附量持续减小,最佳溶液pH值应在2.0-7.0范围内.CCBC对PNP的吸附在4 h时达到平衡,Elovich模型可以很好地拟合动力学数据,且颗粒内扩散不是唯一的控速步骤.吸附等温线符合Sips模型(R2>0.98),最大吸附量为64.11 mg·g-1.热力学结果表明,CCBC对PNP的吸附是一个自发的吸热过程.PNP在CCBC上的吸附机制包括分配作用和表面吸附作用,且以表面吸附作用为主.Abstract: Removal of p-nitrophenol (PNP) from aqueous solution using corncob-derived biochar (CCBC) as an adsorbent was investigated. CCBC was characterized by SEM, FTIR, BET surface area and elemental analysis. The effects of solution pH, and adsorbent dosage on the adsorption performance of CCBC to PNP, and the adsorption kinetics, adsorption isotherms and adsorption thermodynamics were investigated. The adsorption capacity of PNP decreased with an increase of solution pH from 2.0 to 11.0, and the optimal pH value range was from 2.0 to 7.0. The adsorption of PNP onto CCBC reached equilibrium within 4 h. The kinetic data were well fitted by the Elovich model, and the intra-particle diffusion was not the sole rate-limiting step. The maximum adsorption capacity of CCBC for PNP was 64.11 mg·g-1. The Sips isotherm (R2>0.98) was the best one to describe the adsorption behavior. The thermodynamic analysis indicated that the adsorption processes of PNP onto CCBC was spontaneous and endothermic. The sorption mechanism of CCBC was a combination of surface adsorption and partition, and dominated by surface adsorption.
-
Key words:
- biochar /
- corncob /
- adsorption /
- p-nitrophenol /
- wastewater treatment
-
-
[1] 唐登勇, 郑正, 苏东辉, 等. 活性炭纤维吸附废水中对硝基苯酚及其脱附研究[J]. 环境工程学报, 2006,7(1):98-101. TANG D Y, ZHENG Z, SU D H, et al. Adsorption of p-nitrophenol from wastewater by activated carbon fiber and its desorption[J]. Chinese Journal of Environmental Engineering, 2006, 7(1):98-101(in Chinese).
[2] BASTAMI T R, ENTEZARI M H. Activated carbon from carrot dross combined with magnetite nanoparticles for the efficient removal of p-nitrophenol from aqueous solution[J]. Chemical Engineering Journal, 2012,210(6):510-519. [3] ZHANG B, LI F, WU T, et al. Adsorption of p-nitrophenol from aqueous solutions using nanographite oxide[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2015,464:78-88. [4] LIU F, WU Z, WANG D, et al. Magnetic porous silica-graphene oxide hybrid composite as a potential adsorbent for aqueous removal of p-nitrophenol[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2016,490:207-214. [5] HAMIDOUCHE S, BOURAS O, ZERMANE F, et al. Simultaneous sorption of 4-nitrophenol and 2-nitrophenol on a hybrid geocomposite based on surfactant-modified pillared-clay and activated carbon[J]. Chemical Engineering Journal, 2015,279:964-972. [6] SUN Y, ZHOU J, CAI W, et al. Hierarchically porous NiAL-LDH nanoparticles as highly efficient adsorbent for p-nitrophenol from water[J]. Applied Surface Science, 2015,349:897-903. [7] 马锋锋, 赵保卫, 钟金魁, 等. 牛粪生物炭对磷的吸附特性及其影响因素研究[J]. 中国环境科学, 2015,35(4):1156-1163. MA F F, ZHAO B W, ZHONG J K, et al. Characteristics phosphate adsorption onto biochars derived from dairy manure and its influencing factors[J]. China Environmental Science, 2015,35(4):1156-1163(in Chinese).
[8] TAN X, LIU Y, ZENG G, et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 2015,125:70-85. [9] LAMICHHANE S, KRISHNA K C B, SARUKKALIGE R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption:A review[J]. Chemosphere, 2016,148:336-353. [10] 王红彦, 张轩铭, 王道龙, 等. 中国玉米芯资源量估算及其开发利用[J]. 中国农业资源与区划, 2016,37(1):1-8. WANG H Y, ZHANG X M, WANG D L, et al. Estimation and utilization of corncob resources in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016,37(1):1-8(in Chinese).
[11] 王子莹, 邱梦怡, 杨妍, 等. 不同生物炭吸附乙草胺的特征及机理[J]. 农业环境科学学报, 2016,35(1):93-100. WANG Z Y, QIU M Y, YANG Y, et al. Sorption of acetochlor by biochars derived from wood dust and swine manure at different pyrolytic temperatures[J]. Journal of Agro-Environment Science, 2016, 35(1):93-100(in Chinese).
[12] JIA M Y, WANG F, JIN X, et al. Metal ion-oxytetracycline interactions on maize straw biochar pyrolyzed at different temperatures[J]. Chemical Engineering Journal, 2016, 304:934-940. [13] WU F C, TSENG R L, JUANG R S. Characteristics of elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems[J]. Chemical Engineering Journal, 2009,150(2-3):366-373. [14] 吴晴雯, 孟梁, 张志豪, 等. 芦苇秸秆生物炭对水中菲和1,1-二氯乙烯的吸附特性[J]. 环境科学, 2016,37(2):680-688. WU Q W, MENG L, ZHANG Z H, et al. Sorption characteristics of phenanthrene and 1, 1-dichloroethene onto reed straw biochar in aquatic solutions[J]. Environmental Science, 2016,37(2):680-688(in Chinese).s[15] YAN M, ZHOU Q, LI A, et al. Preparation of a novel magnetic microporous adsorbent and its adsorption behavior of p-nitrophenol and chlorotetracycline[J]. Journal of Hazardous Materials, 2014,266:84-93.
[15] 许振, 李云春, 姜友军, 等. 核桃壳粉对水溶液中Pb2+的吸附[J]. 环境工程学报, 2012,6(12):4504-4512. XU Z, LI Y C, JIANG Y J, et al. Adsorption of Pb2+ from aqueous solution by walnut shell powder[J]. Chinese Journal of Environmental Engineering, 2012,6(12):4504-4512(in Chinese).
[16] WITEK-KROWIAK A, SZAFRAN R G, MODELSKI S. Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent[J]. Desalination, 2011,265(1/3):126-134. [17] WANG P, TANG L, WEI X, et al. Synthesis and application of iron and zinc doped biochar for removal of p-nitrophenol in wastewater and assessment of the influence of co-existed Pb(II)[J]. Applied Surface Science, 2016,392:391-401. [18] XUE G H, GAO M L, GU Z, et al. The removal of p-nitrophenol from aqueous solutions by adsorption using gemini surfactants modified montmorillonites[J]. Chemical Engineering Journal, 2013,218(3):223-231. [19] 褚腾飞, 李冬冬, 杜尔登, 等. 碳基吸附剂对典型有机防晒剂二苯甲酮-3的吸附性能及热力学研究[J]. 环境科学学报, 2016,36(3):865-872. CHU T F, LI D D, DU E D, et al. Adsorption characteristics and adsorption thermodynamics of typical UV sunscreen oxybenzone (BP-3) at trace level in water by carbon-based adsorption materials[J]. Acta Scientiae Circumstantiae, 2016,36(3):865-872(in Chinese).
[20] [21] 王菲, 孙红文. 生物炭对极性与非极性有机污染物的吸附机理[J]. 环境化学, 2016,35(6):1134-1141. WANG F, SUN H W. Sorption mechanisms of polar and apolar organic contaminants onto biochars[J]. Environmental Chemistry, 2016, 35(6):1134-1141(in Chinese).
[22] 郭俊元, 王彬. HDTMA改性沸石的制备及吸附废水中对硝基苯酚的性能和动力学[J]. 环境科学, 2016,37(5):1852-1857. GUO J Y, WANG B. Preparation of HDTMA-modified zeolite and its performance in nitro-phenol adsorption from wastewaters[J]. Environmental Science, 2016,37(5):1852-1857(in Chinese).
[23] COTORUELO L M, MARQUéS M D, DíAZ F J, et al. Adsorbent ability of lignin-based activated carbons for the removal of p-nitrophenol from aqueous solutions[J]. Chemical Engineering Journal, 2012,184(3):176-183. [24] 何秋香, 陈祖亮. 柚子皮制备生物炭吸附苯酚的特性和动力学[J]. 环境工程学报, 2014,8(9):3853-3859. HE Q X, CHEN Z L. Characterization and kinetics of biochar prepared from pomelo peel for adsorption of phenol[J]. Chinese Journal of Environmental Engineering, 2014,8(9):3853-3859(in Chinese).
-

计量
- 文章访问数: 1114
- HTML全文浏览数: 1042
- PDF下载数: 540
- 施引文献: 0