纳米ZnO对中华圆田螺的氧化应激效应

蒋安祺, 刘慧, 王为木. 纳米ZnO对中华圆田螺的氧化应激效应[J]. 环境化学, 2017, 36(4): 892-897. doi: 10.7524/j.issn.0254-6108.2017.04.2016102505
引用本文: 蒋安祺, 刘慧, 王为木. 纳米ZnO对中华圆田螺的氧化应激效应[J]. 环境化学, 2017, 36(4): 892-897. doi: 10.7524/j.issn.0254-6108.2017.04.2016102505
JIANG Anqi, LIU Hui, WANG Weimu. Oxidative stress of nano ZnO on Cipangopaludina cahayensis[J]. Environmental Chemistry, 2017, 36(4): 892-897. doi: 10.7524/j.issn.0254-6108.2017.04.2016102505
Citation: JIANG Anqi, LIU Hui, WANG Weimu. Oxidative stress of nano ZnO on Cipangopaludina cahayensis[J]. Environmental Chemistry, 2017, 36(4): 892-897. doi: 10.7524/j.issn.0254-6108.2017.04.2016102505

纳米ZnO对中华圆田螺的氧化应激效应

  • 基金项目:

    国家自然科学基金青年科学基金(51109060)资助.

Oxidative stress of nano ZnO on Cipangopaludina cahayensis

  • Fund Project: Supported by the Young Scientists Fund of the National Natural Science Foundation of China (51109060).
  • 摘要: 以淡水螺为受试生物,研究了中华圆田螺(Cipangopaludina Cahayensis)肝脏中自由基强度、抗氧化酶活性和丙二醛(MDA)含量纳米ZnO暴露21 d时的变化情况.结果表明,纳米ZnO可显著诱导中华圆田螺产生羟基(·OH)自由基;超氧化物歧化酶(SOD)活性和MDA含量的变化趋势相同,0.1-1 mg·L-1暴露下活性随浓度增加逐渐增加,2 mg·L-1时有所回落;过氧化氢酶(CAT)活性呈诱导状态,随浓度增加活性缓慢增大;谷胱甘肽S-转移酶(GST)活性保持抑制状态;·OH信号强度与SOD活性和MDA含量的变化具有一致性;SOD活性和MDA含量激活率较高,CAT激活率则保持稳定.
  • 加载中
  • [1] NATHALIE A, CLAUDIA S, LUC D B,et al.Aquatic acute species sensitivity distributions of ZnO and CuO nanoparticles[J].Science of the Total Environment,2015, 526:233-242.
    [2] LI M,LIN D H,ZHU L Z.Effects of water chemistry on the dissolution of ZnO nanoparticles and theirtoxicity to Escherichia coli[J].Environmental Pollution,2013,173:97-102.
    [3] SIRELRHATIM A, MAHMUD S, SEENI A,et al.Review on zinc oxide nanoparticles:Antibacterial activity and toxicity mechanism[J].Nano-Micro Letters,2015,7(3):219-242.
    [4] SCHIAVO S,OLIVIERO M,MIGLETTA M,et al. Genotoxic and cytotoxic effects of ZnO nanoparticles for Dunaliellatertiolecta and comparison with SiO2 and TiO2 effects at populationgrowth inhibition levels[J].Science of the Total Environment,2016,550:619-627.
    [5] CHEN X L, O'HALLORAN J,JANSEN M A.The toxicity of zinc oxide nanoparticles to Lemna minor (L.) is predominantly caused by dissolved Zn[J].Aquatic Toxicology,2016,174:46-53.
    [6] HASAN K, FATIH A, MEDT G,et al.A comparative toxicity study between small and large size zinc oxide nanoparticles in tilapia (Oreochromis niloticus):Organ pathologies,osmoregulatory responses and immunological parameters[J]. Chemosphere,2016,144:571-582.
    [7] BESSEMER R A, BUTLER K M, TUNNAH L,et al.Cardiorespiratory toxicity of environmentally relevant zinc oxide nanoparticles in the freshwater fish Catostomus commersonii[J].Nanotoxicology,2015,9(7):861-870.
    [8] ALI D,ALI H.Susceptibility of the freshwater pulmonate snail Lymnea luteola L. to copper oxide nanoparticl[J].Toxicological and Environmental Chemistry, 2015,97(5):576-587.
    [9] DAVIES M J, HAVKINS C L. EPR Spin trapping of protein radicals[J]. Free Radical Biology and Medicine, 2004, 36(9):1072-1086.
    [10] 王晓蓉.污染物微观致毒机制和环境生态风险早期诊断[M].北京:科学出版社,2013. WANG X R. Toxic mechanism of pollutants and early diagnosis of ecological risk[M].Beijing:Science Press,2013(in Chinese).
    [11] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry,1976,72:248-254.
    [12] 邹国林,桂兴芬,钟晓凌,等.一种SOD的测活方法-邻苯三酚自氧化法的改进[J].生物化学与生物物理学进展,1986, 4:71-73. ZOU G L, GUI X F, ZHONG X L,et al.A method to determination of SOD activity-to improve the pyrogallol autoxidation method[J]. Progress in Biochemistry and Biophysics,1986

    , 4:71-73(in Chinese).

    [13] 徐镜波,袁小凡,郎佩贞.过氧化氢酶活性及活性抑制的紫外分光光度法测定[J].环境化学, 1997,16(1):73-76.

    XU J B, YUAN X F, LANG P Z. The determination of enzymic activity and its inhibition of catalase[J]. Environmental Chemistry, 1997,16(1):73-76(in Chinese).

    [14] 罗义,施华宏,王晓蓉,等.2,4-二氯苯酚诱导鲫鱼肝脏自由基的产生和脂质过氧化[J].环境科学,2005,26(3):29-32.

    LUO Y, SHI H H, WANG X R, et al.Free radical generation and lipid peroxidation induced by 2,4-Dichlorophenol in liver of Carassius auratus[J]. Environmental Science, 2005, 26(3):29-32(in Chinese).

    [15] HABIG W H, PABST M J, JSKOBY W B. Glutathione-S-transferases the first enzymatic step in mercapturic acid formation[J]. Journal of Biological Chemistry, 1974, 249:7130-7139.
    [16] 刘慧,朱方伟,尹颖,等.纳米ZnO对鲫鱼肝脏的毒性[J].生态毒理学报,2010,5(5):698-703.

    LIU H, ZHU F W, YIN Y,et al.Toxicity of nano-ZnO on liver of goldfish(Carassius auratus)[J].Asian Journal of Ecotoxicology, 2010,5(5):698-703(in Chinese).

    [17] BHUVANESHWARI M,ISWARYA V,ARCHANAA S, et al. Cytotoxicity of ZnO NPs towards fresh water algae Scenedesmus obliquus at low exposure concentrations in UV-C, visibleand dark conditions[J].Aquatic Toxicology,2015,162:29-38.
    [18] 陈家长,宋超,胡庚东,等.微囊藻毒素-LR对罗非鱼肝脏活性氧自由基含量及相关抗氧化酶活性的影响[J].农业环境科学学报, 2011, 30(8):1521-1525

    CHEN J Z, SONG C, HU G D, et al. Effects of microcystin-lr on antioxidant enzymes and reactive oxygen species in tilapia fish[J]. Journal of Agro-Environment Science,2011,30(8):1521-1525(in Chinese).

    [19] VICARIO-PARÉS U, CASTAÑAGA L, LACAVE J M, et al.Comparative toxicity of metal oxide nanoparticles (CuO,ZnO and TiO2) to developing zebrafish embryos[J]. Journal of Nanoparticle Research,2014,16(8):1-16.
    [20] 田文静,白伟,赵春禄,等.纳米ZnO对斑马鱼胚胎抗氧化酶系统的影响[J].中国环境科学,2010,30(5):705-709.

    TIAN W J, BAI W, ZHAO C L, et al. Effects of ZnO nanoparticles on antioxidant enzyme system of zebrafish embryos[J].China Environmental Science, 2010,30(5):705-709(in Chinese).

    [21] 朱方伟.纳米氧化锌对典型水生生物的安全评价[D].南京:河海大学,2010. ZHU F W.Research on safety of nano zinc oxide to modle aquatic[D].Nanjing:Hohai University,2010(in Chinese).
    [22] HALINA F, LESYA G, IRINA Y,et al. Reproductive toxicity of inorganic mercury exposure in adultzebrafish:Histological damage, oxidative stress, and alterations of sexhormone and gene expression in the hypothalamic-pituitary-gonadalaxis[J].Aquatic Toxicology,2016,177:417-424.
    [23] FALFUSHYNSKA H, GNATYSHYNA L,YURCHAK I,et al.The effects of zinc nanooxide on cellular stress responses of the freshwater mussels Unio tumidus are modulated by elevated temperature and organic pollutants[J].Aquatic Toxicology,2015,162:82-93.
    [24] MARISA I, MATOZZO V, MUNARI M,et al. In vivo exposure of the marine clam Ruditapes philippinarumto zinc oxide nanoparticles:responses in gills, digestive glandand haemolymph[J].Environmental Science and Pollution Research,2016,23:15275-15293.
    [25] PRAKASH M, GOPALAKRISHNAN N, ILL M C.Alteration in the expression of antioxidant and detoxification genes in Chironomus riparius exposed to zinc oxide nanoparticles[J].Comparative Biochemistry and Physiology, Part B,2015,190:1-7.
    [26] PHENNY M, ELIZABETH R CARRAWAY, PETER VAN DEN HURK. The induction of biochemical changes in Daphnia magna by CuO and ZnO nanoparticles[J].Aquatic Toxicology,2014,150:201-209.
    [27] 刘林, 赵群芬,朱帅旗,等.纳米氧化锌对斑马鱼肠组织的氧化损伤[J].水产学报,2015,39(11):1702-1711.

    LIU L, ZHAO Q F, ZHU S Q, et al. Oxidative damage of zinc oxide nanoparticles to zebrafish intestine[J].Journal of Fisheries of China, 2015,39(11):1702-1711(in Chinese).

    [28] ZHAO X S,WANG S T,WU Y,et al.Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish[J].Aquatic Toxicology,2013,136-137:49-59.
    [29] ZHANG C,WANG J T,TAN L J,et al.Toxic effects of nano-ZnO on marine microalgae Skeletonema costatum:Attention to the accumulation of intracellular Zn[J].Aquatic Toxicology,2016,178:158-164.
    [30] FANG T, YU L P, ZHANG W C, et al.Effects of humic acid and ionic strength on TiO2 nanoparticles sublethal toxicity to zebrafish[J]. Ecotoxicology,2015,24:2054-2066.
    [31] 吴明珠,何梅琳,邹山梅,等.纳米MgO对斜生栅藻的毒性效应及致毒机理[J].环境化学,2015,34(7):1259-1267.

    WU M Z, HE M L, ZOU S M, et al. Toxicities and mechanisms of MgO nanoparticles to Scenedesmus obliquus[J].Environmental Chemistry, 2015,34(7):1259-1267(in Chinese).

  • 加载中
计量
  • 文章访问数:  780
  • HTML全文浏览数:  734
  • PDF下载数:  309
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-10-25
  • 刊出日期:  2017-04-15
蒋安祺, 刘慧, 王为木. 纳米ZnO对中华圆田螺的氧化应激效应[J]. 环境化学, 2017, 36(4): 892-897. doi: 10.7524/j.issn.0254-6108.2017.04.2016102505
引用本文: 蒋安祺, 刘慧, 王为木. 纳米ZnO对中华圆田螺的氧化应激效应[J]. 环境化学, 2017, 36(4): 892-897. doi: 10.7524/j.issn.0254-6108.2017.04.2016102505
JIANG Anqi, LIU Hui, WANG Weimu. Oxidative stress of nano ZnO on Cipangopaludina cahayensis[J]. Environmental Chemistry, 2017, 36(4): 892-897. doi: 10.7524/j.issn.0254-6108.2017.04.2016102505
Citation: JIANG Anqi, LIU Hui, WANG Weimu. Oxidative stress of nano ZnO on Cipangopaludina cahayensis[J]. Environmental Chemistry, 2017, 36(4): 892-897. doi: 10.7524/j.issn.0254-6108.2017.04.2016102505

纳米ZnO对中华圆田螺的氧化应激效应

  • 1.  河海大学水利水电学院, 南京, 210098;
  • 2.  河海大学南方地区高效灌排与农业水土环境教育部重点实验室, 南京, 210098
基金项目:

国家自然科学基金青年科学基金(51109060)资助.

摘要: 以淡水螺为受试生物,研究了中华圆田螺(Cipangopaludina Cahayensis)肝脏中自由基强度、抗氧化酶活性和丙二醛(MDA)含量纳米ZnO暴露21 d时的变化情况.结果表明,纳米ZnO可显著诱导中华圆田螺产生羟基(·OH)自由基;超氧化物歧化酶(SOD)活性和MDA含量的变化趋势相同,0.1-1 mg·L-1暴露下活性随浓度增加逐渐增加,2 mg·L-1时有所回落;过氧化氢酶(CAT)活性呈诱导状态,随浓度增加活性缓慢增大;谷胱甘肽S-转移酶(GST)活性保持抑制状态;·OH信号强度与SOD活性和MDA含量的变化具有一致性;SOD活性和MDA含量激活率较高,CAT激活率则保持稳定.

English Abstract

参考文献 (31)

返回顶部

目录

/

返回文章
返回