玉米芯生物炭吸附水中对硝基苯酚的特性

马锋锋, 赵保卫. 玉米芯生物炭吸附水中对硝基苯酚的特性[J]. 环境化学, 2017, 36(4): 898-906. doi: 10.7524/j.issn.0254-6108.2017.04.2016080701
引用本文: 马锋锋, 赵保卫. 玉米芯生物炭吸附水中对硝基苯酚的特性[J]. 环境化学, 2017, 36(4): 898-906. doi: 10.7524/j.issn.0254-6108.2017.04.2016080701
MA Fengfeng, ZHAO Baowei. Adsorption characteristics of p-nitrophenol in aqueous solution by corncob biochar[J]. Environmental Chemistry, 2017, 36(4): 898-906. doi: 10.7524/j.issn.0254-6108.2017.04.2016080701
Citation: MA Fengfeng, ZHAO Baowei. Adsorption characteristics of p-nitrophenol in aqueous solution by corncob biochar[J]. Environmental Chemistry, 2017, 36(4): 898-906. doi: 10.7524/j.issn.0254-6108.2017.04.2016080701

玉米芯生物炭吸附水中对硝基苯酚的特性

  • 基金项目:

    国家自然科学基金(21167007,21467013)和高等学校博士学科点专项科研基金(20136204110003)资助.

Adsorption characteristics of p-nitrophenol in aqueous solution by corncob biochar

  • Fund Project: Supported by the National Natural Science Foundation of China (21167007, 21467013)and Specialized Research Fund for the Doctoral Program of Higher Education of China (20136204110003).
  • 摘要: 以玉米芯为原料制备玉米芯生物炭(CCBC),探讨其对水中对硝基苯酚(PNP)的吸附特性,同时运用扫描电镜、傅里叶红外光谱、比表面积仪和元素分析对生物炭的理化性质进行表征,考察了溶液pH值和生物炭投加量对CCBC吸附PNP的影响.结果表明,在溶液pH值在2.0-11.0范围内,随着溶液pH值的升高,CCBC对PNP的吸附量持续减小,最佳溶液pH值应在2.0-7.0范围内.CCBC对PNP的吸附在4 h时达到平衡,Elovich模型可以很好地拟合动力学数据,且颗粒内扩散不是唯一的控速步骤.吸附等温线符合Sips模型(R2>0.98),最大吸附量为64.11 mg·g-1.热力学结果表明,CCBC对PNP的吸附是一个自发的吸热过程.PNP在CCBC上的吸附机制包括分配作用和表面吸附作用,且以表面吸附作用为主.
  • 加载中
  • [1] 唐登勇, 郑正, 苏东辉, 等. 活性炭纤维吸附废水中对硝基苯酚及其脱附研究[J]. 环境工程学报, 2006,7(1):98-101.

    TANG D Y, ZHENG Z, SU D H, et al. Adsorption of p-nitrophenol from wastewater by activated carbon fiber and its desorption[J]. Chinese Journal of Environmental Engineering, 2006, 7(1):98-101(in Chinese).

    [2] BASTAMI T R, ENTEZARI M H. Activated carbon from carrot dross combined with magnetite nanoparticles for the efficient removal of p-nitrophenol from aqueous solution[J]. Chemical Engineering Journal, 2012,210(6):510-519.
    [3] ZHANG B, LI F, WU T, et al. Adsorption of p-nitrophenol from aqueous solutions using nanographite oxide[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2015,464:78-88.
    [4] LIU F, WU Z, WANG D, et al. Magnetic porous silica-graphene oxide hybrid composite as a potential adsorbent for aqueous removal of p-nitrophenol[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2016,490:207-214.
    [5] HAMIDOUCHE S, BOURAS O, ZERMANE F, et al. Simultaneous sorption of 4-nitrophenol and 2-nitrophenol on a hybrid geocomposite based on surfactant-modified pillared-clay and activated carbon[J]. Chemical Engineering Journal, 2015,279:964-972.
    [6] SUN Y, ZHOU J, CAI W, et al. Hierarchically porous NiAL-LDH nanoparticles as highly efficient adsorbent for p-nitrophenol from water[J]. Applied Surface Science, 2015,349:897-903.
    [7] 马锋锋, 赵保卫, 钟金魁, 等. 牛粪生物炭对磷的吸附特性及其影响因素研究[J]. 中国环境科学, 2015,35(4):1156-1163.

    MA F F, ZHAO B W, ZHONG J K, et al. Characteristics phosphate adsorption onto biochars derived from dairy manure and its influencing factors[J]. China Environmental Science, 2015,35(4):1156-1163(in Chinese).

    [8] TAN X, LIU Y, ZENG G, et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 2015,125:70-85.
    [9] LAMICHHANE S, KRISHNA K C B, SARUKKALIGE R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption:A review[J]. Chemosphere, 2016,148:336-353.
    [10] 王红彦, 张轩铭, 王道龙, 等. 中国玉米芯资源量估算及其开发利用[J]. 中国农业资源与区划, 2016,37(1):1-8.

    WANG H Y, ZHANG X M, WANG D L, et al. Estimation and utilization of corncob resources in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016,37(1):1-8(in Chinese).

    [11] 王子莹, 邱梦怡, 杨妍, 等. 不同生物炭吸附乙草胺的特征及机理[J]. 农业环境科学学报, 2016,35(1):93-100.

    WANG Z Y, QIU M Y, YANG Y, et al. Sorption of acetochlor by biochars derived from wood dust and swine manure at different pyrolytic temperatures[J]. Journal of Agro-Environment Science, 2016, 35(1):93-100(in Chinese).

    [12] JIA M Y, WANG F, JIN X, et al. Metal ion-oxytetracycline interactions on maize straw biochar pyrolyzed at different temperatures[J]. Chemical Engineering Journal, 2016, 304:934-940.
    [13] WU F C, TSENG R L, JUANG R S. Characteristics of elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems[J]. Chemical Engineering Journal, 2009,150(2-3):366-373.
    [14] 吴晴雯, 孟梁, 张志豪, 等. 芦苇秸秆生物炭对水中菲和1,1-二氯乙烯的吸附特性[J]. 环境科学, 2016,37(2):680-688.

    WU Q W, MENG L, ZHANG Z H, et al. Sorption characteristics of phenanthrene and 1, 1-dichloroethene onto reed straw biochar in aquatic solutions[J]. Environmental Science, 2016,37(2):680-688(in Chinese).s[15] YAN M, ZHOU Q, LI A, et al. Preparation of a novel magnetic microporous adsorbent and its adsorption behavior of p-nitrophenol and chlorotetracycline[J]. Journal of Hazardous Materials, 2014,266:84-93.

    [15] 许振, 李云春, 姜友军, 等. 核桃壳粉对水溶液中Pb2+的吸附[J]. 环境工程学报, 2012,6(12):4504-4512.

    XU Z, LI Y C, JIANG Y J, et al. Adsorption of Pb2+ from aqueous solution by walnut shell powder[J]. Chinese Journal of Environmental Engineering, 2012,6(12):4504-4512(in Chinese).

    [16] WITEK-KROWIAK A, SZAFRAN R G, MODELSKI S. Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent[J]. Desalination, 2011,265(1/3):126-134.
    [17] WANG P, TANG L, WEI X, et al. Synthesis and application of iron and zinc doped biochar for removal of p-nitrophenol in wastewater and assessment of the influence of co-existed Pb(II)[J]. Applied Surface Science, 2016,392:391-401.
    [18] XUE G H, GAO M L, GU Z, et al. The removal of p-nitrophenol from aqueous solutions by adsorption using gemini surfactants modified montmorillonites[J]. Chemical Engineering Journal, 2013,218(3):223-231.
    [19] 褚腾飞, 李冬冬, 杜尔登, 等. 碳基吸附剂对典型有机防晒剂二苯甲酮-3的吸附性能及热力学研究[J]. 环境科学学报, 2016,36(3):865-872.

    CHU T F, LI D D, DU E D, et al. Adsorption characteristics and adsorption thermodynamics of typical UV sunscreen oxybenzone (BP-3) at trace level in water by carbon-based adsorption materials[J]. Acta Scientiae Circumstantiae, 2016,36(3):865-872(in Chinese).

    [20]
    [21] 王菲, 孙红文. 生物炭对极性与非极性有机污染物的吸附机理[J]. 环境化学, 2016,35(6):1134-1141.

    WANG F, SUN H W. Sorption mechanisms of polar and apolar organic contaminants onto biochars[J]. Environmental Chemistry, 2016, 35(6):1134-1141(in Chinese).

    [22] 郭俊元, 王彬. HDTMA改性沸石的制备及吸附废水中对硝基苯酚的性能和动力学[J]. 环境科学, 2016,37(5):1852-1857.

    GUO J Y, WANG B. Preparation of HDTMA-modified zeolite and its performance in nitro-phenol adsorption from wastewaters[J]. Environmental Science, 2016,37(5):1852-1857(in Chinese).

    [23] COTORUELO L M, MARQUéS M D, DíAZ F J, et al. Adsorbent ability of lignin-based activated carbons for the removal of p-nitrophenol from aqueous solutions[J]. Chemical Engineering Journal, 2012,184(3):176-183.
    [24] 何秋香, 陈祖亮. 柚子皮制备生物炭吸附苯酚的特性和动力学[J]. 环境工程学报, 2014,8(9):3853-3859.

    HE Q X, CHEN Z L. Characterization and kinetics of biochar prepared from pomelo peel for adsorption of phenol[J]. Chinese Journal of Environmental Engineering, 2014,8(9):3853-3859(in Chinese).

  • 加载中
计量
  • 文章访问数:  1116
  • HTML全文浏览数:  1044
  • PDF下载数:  540
  • 施引文献:  0
出版历程
  • 刊出日期:  2017-04-15
马锋锋, 赵保卫. 玉米芯生物炭吸附水中对硝基苯酚的特性[J]. 环境化学, 2017, 36(4): 898-906. doi: 10.7524/j.issn.0254-6108.2017.04.2016080701
引用本文: 马锋锋, 赵保卫. 玉米芯生物炭吸附水中对硝基苯酚的特性[J]. 环境化学, 2017, 36(4): 898-906. doi: 10.7524/j.issn.0254-6108.2017.04.2016080701
MA Fengfeng, ZHAO Baowei. Adsorption characteristics of p-nitrophenol in aqueous solution by corncob biochar[J]. Environmental Chemistry, 2017, 36(4): 898-906. doi: 10.7524/j.issn.0254-6108.2017.04.2016080701
Citation: MA Fengfeng, ZHAO Baowei. Adsorption characteristics of p-nitrophenol in aqueous solution by corncob biochar[J]. Environmental Chemistry, 2017, 36(4): 898-906. doi: 10.7524/j.issn.0254-6108.2017.04.2016080701

玉米芯生物炭吸附水中对硝基苯酚的特性

  • 1. 兰州交通大学环境与市政工程学院, 兰州, 730070
基金项目:

国家自然科学基金(21167007,21467013)和高等学校博士学科点专项科研基金(20136204110003)资助.

摘要: 以玉米芯为原料制备玉米芯生物炭(CCBC),探讨其对水中对硝基苯酚(PNP)的吸附特性,同时运用扫描电镜、傅里叶红外光谱、比表面积仪和元素分析对生物炭的理化性质进行表征,考察了溶液pH值和生物炭投加量对CCBC吸附PNP的影响.结果表明,在溶液pH值在2.0-11.0范围内,随着溶液pH值的升高,CCBC对PNP的吸附量持续减小,最佳溶液pH值应在2.0-7.0范围内.CCBC对PNP的吸附在4 h时达到平衡,Elovich模型可以很好地拟合动力学数据,且颗粒内扩散不是唯一的控速步骤.吸附等温线符合Sips模型(R2>0.98),最大吸附量为64.11 mg·g-1.热力学结果表明,CCBC对PNP的吸附是一个自发的吸热过程.PNP在CCBC上的吸附机制包括分配作用和表面吸附作用,且以表面吸附作用为主.

English Abstract

参考文献 (24)

返回顶部

目录

/

返回文章
返回