ZnO-NPs对反硝化同时甲烷化体系抑制作用的数学模拟
Modeling the inhibitory effect of ZnO-NPs on simultaneous denitrification and methanation system
-
摘要: 通过建立反硝化同时甲烷化(SDM)扩展模型,动态模拟ZnO-NPs对酸化菌、产甲烷菌和反硝化菌的抑制作用.结果表明,该模型能较好地用于分析ZnO-NPs对SDM体系的抑制作用,主要表现为底物利用速率的抑制.在ZnO-NPs的抑制效应上产甲烷菌比反硝化菌更敏感.添加50、100、200 mg·L-1的ZnO-NPs使甲烷量分别降为对照的96.2%、79.9%、62.8%,但氮气产量未受影响.结合遗传算法和回归拟合,对生化过程底物利用速率和抑制性常数进行估计,得到:KI,NO2=0.00007KI,NO3=0.042;KI,ZnO,bu=0.094KI,ZnO,pro=0.10KI,ZnO,ac=4.45,证实了NO2-对产甲烷菌的抑制强于NO3-,ZnO-NPs对酸化菌的抑制强于产甲烷菌.
-
关键词:
- ZnO-NPs /
- 反硝化同时甲烷化(SDM) /
- 抑制 /
- 动态模拟
Abstract: An extended model for simultaneous denitrification and methanogenesis (SDM) was developed to simulate dynamically the inhibitory effect of ZnO-NPs on acid-producing bacteria, methanogens and denitrifying bacteria. The results showed that the above model was able to describe properly the inhibitory effect of ZnO-NPs on the SDM system, mainly the inhibition of substrate utilization rate. The response for methanogens to the inhibition of ZnO-NPs was more sensitive to that of denitrifying bacteria. Methane production with addition of 50, 100 and 200 mg·L-1 ZnO-NPs decreased to 96.2%, 79.9% and 62.8% of the control, respectively, whereas the nitrogen production was not inhibited notably. The substrate utilization efficiency and inhibitory constants were estimated by the combination of Genetic Algorithm and Regression Fitting and followed the order of KI,NO2=0.00007KI,NO3=0.042; KI,ZnO,bu=0.094KI,ZnO,pro=0.10KI,ZnO,ac=4.45. These results demonstrated that the order of inhibitory effect of N-oxides on methanogens was NO2- >NO3-, and ZnO NPs had a stronger inhibitory effect on acid-producing bacteria compared to methanogens. -
-
[1] 邹彩琼,贾漫珂,黄应平,等.ZnO纳米从的制备及其光催化性能研究[J].环境化学,2012,31(6):830-836. ZOU C Q,JIA M K,HUANG Y P,et al.Preparation and photocatalytic activity of ZnO nanobushes[J].Environmental Chemistry,2012,31(6):830-836(in Chinese).
[2] MAYNARD A D,AITKEN R J,BUTZ T,et al. Safe handling of nanotechnology[J].Nature,2006,444(7117):267-269. [3] NOWACK B,BUCHELI T D.Occurrence,behavior and effects of nanoparticles in the environment[J].Environmental Pollution,2007,150(1):5-22. [4] 陈安伟,曾光明,陈桂秋,等.金属纳米材料的生物毒性效应研究进展[J].环境化学,2014,33(4):568-575. CHEN A W,ZENG G M,CHEN G Q,et al.Advance in research on toxicity of metal nanomaterials[J].Environmental Chemistry,2014,33(4):568-575(in Chinese).
[5] MORONES J R,ELECHIGUERRAJ L,CAMACHO A,et al.The bactericidal effect of silver nanoparticles[J].Nanotechnology,2005,16(10):2346-2353. [6] ZHENG X,WU R,CHEN Y G.Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal[J].Environmental Science&Technology,2011,45(7):2826-2832. [7] MU H,CHEN Y G,XIAO N D.Effects of metal oxide nanoparticles (TiO2,Al2O3,SiO2 and ZnO) on waste activated sludge anaerobic digestion[J].Bioresource Technology,2011,102(22):10305-10311. [8] 魏媛媛,郑雄,陈银广,等.工程纳米颗粒对污水生物处理影响的研究进展[J].微生物学通报,2014,41(5):916-923. WEI Y Y,ZHENG X,CHEN Y G,et al.Effect of engineered nanomaterials on biological wastewater treatment-A review[J].Microbiology China,2014,41(5):916-923(in Chinese).
[9] OTERO-GONZALEZ L,FIELD J A,SIERRA-ALVAREZ R.Fate and long-term inhibitory impact of ZnO nanoparticles during high-rate anaerobic wastewater treatment[J].Journal of Environmental Management,2014,135:110-117. [10] MU H,ZHENG X,CHEN Y G,et al.Response of anaerobic granular sludge to a shock load of zinc oxide nanoparticles during biological wastewater treatment[J].Environmental Science&Technology,2012,46(11):5997-6003. [11] 张伟政,陈永春,石先阳,等.乙酸钠为电子供体时反硝化耦合甲烷化过程的数学模拟[J].环境工程,2014,9:63-69.ZHANG W Z,CHEN Y C,SHI X Y,et al.Mathematical simulation of simultaneous denitrification and methanogenesis with sodium acetate as the electron donor[J].Environmental Engineering,2014 ,9:63-69(in Chinese).
[12] 王树涛,李素萍,王未青,等.ZnO纳米颗粒对SBR活性污泥活性的影响[J].中国环境科学,2014,34(10):2575-2580. WANG S T,LI S P,WANG W Q,et al.Impact of ZnO nanoparticles on the activity of the activated sludge in SBR[J].China Environmental Science,2014,34(10):2575-2580(in Chinese).
[13] 李晶,胡霞林,陈启晴,等.纳米材料对水生生物的生态毒理效应研究进展[J].环境化学,2011,30(12):1993-2002. LI J,HU,X L,CHEN Q Q,et al.Ecotoxicology of nanomaterials on aquatic organisms[J].Environmental Chemistry,2011,30(12):1993-2002(in Chinese).
[14] 国家环境保护总局.水和废水监测分析方法[M].第4版.北京:中国环境科学出版社,2002.The State Environmental Protection Administration.Water and wastewater monitoring analysis method[M].4th Version,Beijing:China Environmental Science Press,2002(in Chinese). [15] TUGTAS A E,TEZAL U,PAVLOSTATHIS S G.An extension of the anaerobic digestion model No.1 to include the effect of nitrate reduction processes[J].Water Science and Technology,2006,54(4):41-49. [16] KLUBER D H,CONRAD R.Inhibitory effects of nitrate,nitrite,NO,and N2O on methanogenesis by Methanosarcina barkeri and Methanobacterium bryantii[J].FEMS Microbiology Ecology,1998(a),25(4):331-339. [17] KLUBER D H,CONRAD R.Effects of nitrate,nitrite,NO,and N2O on methanogenesis and other redox processes in anoxic rice field soil[J].FEMS Microbiology Ecology,1998(b),25(3):301-318. [18] TUGTAS A E,TEZAL U,PAVLOSTATHIS S G.A comprehensive model of simultaneous denitrification and methanogenic fermentation processes[J].Biotechnology and Bioengineering,2010,105(1):98-108. [19] BATSTONE D J,KELLER J,ANGELIDAKI I,et al.The IWA anaerobic digestion model No 1(ADM1)[J].Water Science and Technology,2002,45(10):65-73. -

计量
- 文章访问数: 720
- HTML全文浏览数: 669
- PDF下载数: 303
- 施引文献: 0