氧化锌@石墨烯纳米复合材料的抑菌性能及其细胞毒性

段慧敏, 杨林松, 周正伟, 何光裕, 王利群, 陈海群. 氧化锌@石墨烯纳米复合材料的抑菌性能及其细胞毒性[J]. 环境化学, 2016, 35(7): 1468-1473. doi: 10.7524/j.issn.0254-6108.2016.07.2015112704
引用本文: 段慧敏, 杨林松, 周正伟, 何光裕, 王利群, 陈海群. 氧化锌@石墨烯纳米复合材料的抑菌性能及其细胞毒性[J]. 环境化学, 2016, 35(7): 1468-1473. doi: 10.7524/j.issn.0254-6108.2016.07.2015112704
DUAN Huimin, YANG Linsong, ZHOU Zhengwei, HE Guangyu, WANG Liqun, CHEN Haiqun. Antibacterial activity and cytotoxicity of ZnO@graphene nanocomposites[J]. Environmental Chemistry, 2016, 35(7): 1468-1473. doi: 10.7524/j.issn.0254-6108.2016.07.2015112704
Citation: DUAN Huimin, YANG Linsong, ZHOU Zhengwei, HE Guangyu, WANG Liqun, CHEN Haiqun. Antibacterial activity and cytotoxicity of ZnO@graphene nanocomposites[J]. Environmental Chemistry, 2016, 35(7): 1468-1473. doi: 10.7524/j.issn.0254-6108.2016.07.2015112704

氧化锌@石墨烯纳米复合材料的抑菌性能及其细胞毒性

  • 基金项目:

    国家自然科学基金(51472035,51572036),江苏省科技厅(BE2014089,BY2015027-18),常州市科技局基金(CM20153006)资助.

Antibacterial activity and cytotoxicity of ZnO@graphene nanocomposites

  • Fund Project: Supported by the National Natural Science Foundation of China (51472035, 51572036), the Science and Technology Department of Jiangsu Province (BE2014089, BY2015027-18)and Science and Technology Project of Changzhou(CM20153006).
  • 摘要: 以氧化石墨和乙酸锌为原料,通过水热反应成功制备了氧化锌@石墨烯纳米复合材料,采用X射线衍射(XRD)、红外吸收光谱(FTIR)和透射电子显微镜(TEM)对制得的复合材料进行了表征.以大肠杆菌(E.coli)为实验菌种,对复合材料的抑菌性能进行了测试;并选用小鼠成纤维细胞L-929评价了材料的细胞毒性.结果表明,纳米氧化锌颗粒均匀地负载在石墨烯片层上,形貌均一,平均粒径为12 nm左右.复合材料在60 μg·mL-1时可以完全抑制大肠杆菌的生长,是一种效果显著的新型抑菌材料.L-929细胞毒性测试表明复合材料的生物毒性比较缓和,氧化锌@石墨烯纳米复合材料可以作为一种安全高效的无机抑菌材料使用.
  • 加载中
  • [1] 孟华.纳米氧化锌的抗菌性及其抗菌机理讨论[J].工业技术,2014,9:184-187. MENG H. Discussion on antibacterial and mechanism of nanometer ZnO[J]. Industrial Technology, 2014

    , 9:184-187(in Chinese).

    [2] 马建中,惠爱平,刘俊莉.纳米ZnO抗菌材料的研究进展[J].材料导报,2014,24:24001-24007. MA J Z, HUI A P, LIU J L. Advance in research on ZnO nano-antibacterial materials[J]. Materials Review, 2014

    , 24:24001-24007(in Chinese).

    [3] LI J H, HONG R Y, LI M Y. Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings[J]. Progress in Organic Coatings, 2009, 64:504-509.
    [4] NICOLE J, BINATA R, KOODALI R. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms[J]. FEMS Microbiol Lett, 2008, 56:71-76.
    [5] TANG E J, DONG SHI Y. Preparation of styrene polymer/ZnO nanocomposite latex via miniemulsion polymerization and its antibacterial property[J]. Colloid Polym Sci, 2009, 287:1025-1032.
    [6] 况慧娟,杨林,许恒毅.纳米氧化锌抗菌性能及机制的研究进展[J].中国药理学与毒理学杂志,2015,29(1):153-157.

    KUANG H J, YANG L, XU H Y. Advance in research on antibacterial properties and mechanism of zinc oxide[J]. Chinese Journal of Pharmacology and Toxicology, 2015, 29(1):153-157(in Chinese).

    [7] 段月琴,孙永昌,王玉红.纳米复合抗菌面料的研制及其抗菌性能[J].天津冶金,2005,1:44-45. DUAN Y T, SUN Y C, WANG Y H. Preparation and antibacterial properties of antibacterial nano-composite fabrics[J]. Tianjin Metallurgy, 2005

    , 1:44-45(in Chinese).

    [8] MANJULA G, NIRMALA M, REKHA K. Structural, optical, photo catalytic and antibacterial activity of ZnO and Co doped ZnO nanoparticles[J]. Materials Letters, 2011,(65):1797-1800.
    [9] BOUVYA C, MARINE W, SPORKENC R, et al. Nanosized ZnO confined inside a Faujasite X zeolite matrix:Characterization and optical properties[J]. Colloids and Surfaces A:Physicochem, 2007, 300:145-149.
    [10] SHEN X Y, MU D B, ChEN S, et al. Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries[J]. Applied Materials & Interfaces, 2013,(5):3118-3125.
    [11] COPCIA V E, GRADINARU R, MIHAI G D, et al. Antibacterial activity of nanosized ZnO hosted in microporous clinoptilolite and mesoporous silica SBA-15 matrices[J]. Revista De Chimie, 2012, 63(11):1124-1131.
    [12] HE G Y, DAI W,ZHAO Y T, et al. A facile synthesis of Ag@graphene-nanosheet composite with enhanced antibacterial activity and acceptable environmental safety[J]. Monatsh Chem, 2014,(145):3-10.
    [13] 柳劲松,李涛.石墨烯/氧化锌复合材料超级电容电化学性能研究[J].电站系统工程,2015,31(4):45-48.

    LIU J S, LI T. Study on electrochemical properties of graphene/zinc oxide composites[J]. Power System Engineering, 2015, 31(4):45-48(in Chinese).

    [14] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191.
    [15] CHEN H Q, MⅡLLER M B, GILMORE K J, et al. Mechanically strong, electrically conductive, and biocompatible graphene paper[J]. Advanced Materials, 2008, 20(18):3557-3561.
    [16] PARK S, MOHANTY N, SUK J W, et al. Biocompatible, robust freestanding paper composed of a Tween/graphene composite[J]. Advanced Materials, 2010, 22(15):1736-1740.
    [17] ZHU Y W, MURALI S, CAI W W, et al. Graphene and graphene oxide:synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35):3906-3924.
    [18] SI Y, SAMULSKI E T.Synthesis of water soluble graphene[J]. Nano Letters, 2008, 8(6):1679-1682.
    [19] XU C, WANG X, ZHU J W. Graphene-metal particle nanocomposites[J]. J Phys Chem, 2008, 112(50):19841-19845.
    [20] Mao H H, Liu X T, Yang J H, et al. Synthesis of magnetic FexOy@silica-pillared clay(SPC) composites via a novel sol-gel route for controlled drug release and targeting[J]. Materials Science and Engineering C, 2014, 40:102-108.
    [21] YUAN J J, ZHU J W, BI H P, et al. Graphene-based 3D composite hydrogel by anchoring Co3O4 nanoparticles with enhanced electrochemical properties[J]. Physical Chemisrty Chemical Physics, 2013, 15:12940-12945.
    [22] XIAO F X. Construction of highly ordered ZnO-TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application[J]. ACS Applied Materials & Interfaces, 2012, 4:7055-7063.
    [23] ZHANG L L, JIANG Y H, DING Y L. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids)[J]. Journal of Nanoparticle Research, 2007, 9(18):479-489.
    [24] PARK S, RUOFF R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2009, 4(4):217-224.
    [25] KHAYATIANA S A, AHMAD K, NASSER S, et al. Preparation and characterization of Al doped ZnO NPs/graphene nanocomposites synthesized by a facile one-step solvothermal method[J]. Ceramics International, 2016, 42:110-115.
    [26] 王斌,张莉,郭志华,等.石墨烯/银纳米复合材料的制备及抗菌性能的研究[J].稀有金属材料与工程,2015,44(1):169-173.

    WANG B,ZHANG L,GUO Z H, et al. Synthesis of graphene/Ag nancomposites and their antimicrobial properties[J]. Rare Metal Materials and Engineering, 2015,44(1):169-173(in Chinese).

    [27] 孙婷婷,蒋澄宇.纳米氧化铜导致小鼠急性肺损伤[J].基础医学与临床,2012,33(4):386-389.

    SUN T T, JIANG C Y. Copper oxide nanoparticles induce acute pulmonary injury in mice[J].Basic & Clinical Medicine, 2012,33(4):386-389(in Chinese).

    [28] YAMAMOTO A, HONMA R, SUMITA M, et al. Cytotoxicity evaluation of ceramic particles of different sizes and shapes[J]. Journal of Biomedical Materials Research Part A, 2004, 68(2):244-256.
    [29] NEL A, XIA T, MÄDLER L, et al. toxic Potential of Materials at the Nanolevel[J]. Science, 2006, 311(5761):622-627.
    [30] 陈安伟,曾光明,陈桂秋,等.金属纳米材料的生物毒性效应研究进展[J].环境化学,2014,33(4):568-575.

    CHEN A W, ZENG G M CHEN G Q, et al. Advance in research on toxicity of metal nanomaterials[J]. Environmental Chemistry, 2014, 33(4):568-575(in Chinese).

    [31] OLTEANUA D, FILIP A, SOCACIB C, et al. Cytotoxicity assessment of graphene-based nanomaterials on human dental follicle stem cells[J]. Colloids and Surfaces B:Biointerfaces, 2015, 136:791-798.
  • 加载中
计量
  • 文章访问数:  1813
  • HTML全文浏览数:  1738
  • PDF下载数:  603
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-11-27
  • 刊出日期:  2016-07-15
段慧敏, 杨林松, 周正伟, 何光裕, 王利群, 陈海群. 氧化锌@石墨烯纳米复合材料的抑菌性能及其细胞毒性[J]. 环境化学, 2016, 35(7): 1468-1473. doi: 10.7524/j.issn.0254-6108.2016.07.2015112704
引用本文: 段慧敏, 杨林松, 周正伟, 何光裕, 王利群, 陈海群. 氧化锌@石墨烯纳米复合材料的抑菌性能及其细胞毒性[J]. 环境化学, 2016, 35(7): 1468-1473. doi: 10.7524/j.issn.0254-6108.2016.07.2015112704
DUAN Huimin, YANG Linsong, ZHOU Zhengwei, HE Guangyu, WANG Liqun, CHEN Haiqun. Antibacterial activity and cytotoxicity of ZnO@graphene nanocomposites[J]. Environmental Chemistry, 2016, 35(7): 1468-1473. doi: 10.7524/j.issn.0254-6108.2016.07.2015112704
Citation: DUAN Huimin, YANG Linsong, ZHOU Zhengwei, HE Guangyu, WANG Liqun, CHEN Haiqun. Antibacterial activity and cytotoxicity of ZnO@graphene nanocomposites[J]. Environmental Chemistry, 2016, 35(7): 1468-1473. doi: 10.7524/j.issn.0254-6108.2016.07.2015112704

氧化锌@石墨烯纳米复合材料的抑菌性能及其细胞毒性

  • 1.  常州大学环境与安全工程学院, 常州市石墨烯环境安全材料重点实验室, 常州, 213164;
  • 2.  常州大学制药与生命科学学院, 常州, 213164
基金项目:

国家自然科学基金(51472035,51572036),江苏省科技厅(BE2014089,BY2015027-18),常州市科技局基金(CM20153006)资助.

摘要: 以氧化石墨和乙酸锌为原料,通过水热反应成功制备了氧化锌@石墨烯纳米复合材料,采用X射线衍射(XRD)、红外吸收光谱(FTIR)和透射电子显微镜(TEM)对制得的复合材料进行了表征.以大肠杆菌(E.coli)为实验菌种,对复合材料的抑菌性能进行了测试;并选用小鼠成纤维细胞L-929评价了材料的细胞毒性.结果表明,纳米氧化锌颗粒均匀地负载在石墨烯片层上,形貌均一,平均粒径为12 nm左右.复合材料在60 μg·mL-1时可以完全抑制大肠杆菌的生长,是一种效果显著的新型抑菌材料.L-929细胞毒性测试表明复合材料的生物毒性比较缓和,氧化锌@石墨烯纳米复合材料可以作为一种安全高效的无机抑菌材料使用.

English Abstract

参考文献 (31)

返回顶部

目录

/

返回文章
返回