氧化锌@石墨烯纳米复合材料的抑菌性能及其细胞毒性
Antibacterial activity and cytotoxicity of ZnO@graphene nanocomposites
-
摘要: 以氧化石墨和乙酸锌为原料,通过水热反应成功制备了氧化锌@石墨烯纳米复合材料,采用X射线衍射(XRD)、红外吸收光谱(FTIR)和透射电子显微镜(TEM)对制得的复合材料进行了表征.以大肠杆菌(E.coli)为实验菌种,对复合材料的抑菌性能进行了测试;并选用小鼠成纤维细胞L-929评价了材料的细胞毒性.结果表明,纳米氧化锌颗粒均匀地负载在石墨烯片层上,形貌均一,平均粒径为12 nm左右.复合材料在60 μg·mL-1时可以完全抑制大肠杆菌的生长,是一种效果显著的新型抑菌材料.L-929细胞毒性测试表明复合材料的生物毒性比较缓和,氧化锌@石墨烯纳米复合材料可以作为一种安全高效的无机抑菌材料使用.Abstract: ZnO@graphene nanocomposite were prepared by hydrothermal method, using graphite oxide (GO) and zinc acetate as raw materials. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscope (TEM) were used to characterize the prepared nano-composite. The antibacterial activity of ZnO@graphene nano-composites was tested using E.coli as mode strain. Moreover, cytotoxicity was assessed using L-929 mouse fibroblast cells. The results of characterization indicated that zinc oxide nanoparticles were uniformly dispersed on graphene surface with particle size around 12 nm. The minimal inhibitory concentration of ZnO@graphene against E.coli was 60 μg·mL-1, suggesting that the composite was an outstanding antibacterial material. Additionally, the toxicity tests demorstrated that the prepared nano-composite posed no significant toxicity on L-929 cells. Therefore, ZnO@graphene nano-composites can be used as a new type of antibacterial material.
-
Key words:
- graphene /
- ZnO /
- nano-composite /
- antibacterial activity /
- cytotoxicity
-
-
[1] 孟华.纳米氧化锌的抗菌性及其抗菌机理讨论[J].工业技术,2014,9:184-187. MENG H. Discussion on antibacterial and mechanism of nanometer ZnO[J]. Industrial Technology, 2014 , 9:184-187(in Chinese).
[2] 马建中,惠爱平,刘俊莉.纳米ZnO抗菌材料的研究进展[J].材料导报,2014,24:24001-24007. MA J Z, HUI A P, LIU J L. Advance in research on ZnO nano-antibacterial materials[J]. Materials Review, 2014 , 24:24001-24007(in Chinese).
[3] LI J H, HONG R Y, LI M Y. Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings[J]. Progress in Organic Coatings, 2009, 64:504-509. [4] NICOLE J, BINATA R, KOODALI R. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms[J]. FEMS Microbiol Lett, 2008, 56:71-76. [5] TANG E J, DONG SHI Y. Preparation of styrene polymer/ZnO nanocomposite latex via miniemulsion polymerization and its antibacterial property[J]. Colloid Polym Sci, 2009, 287:1025-1032. [6] 况慧娟,杨林,许恒毅.纳米氧化锌抗菌性能及机制的研究进展[J].中国药理学与毒理学杂志,2015,29(1):153-157. KUANG H J, YANG L, XU H Y. Advance in research on antibacterial properties and mechanism of zinc oxide[J]. Chinese Journal of Pharmacology and Toxicology, 2015, 29(1):153-157(in Chinese).
[7] 段月琴,孙永昌,王玉红.纳米复合抗菌面料的研制及其抗菌性能[J].天津冶金,2005,1:44-45. DUAN Y T, SUN Y C, WANG Y H. Preparation and antibacterial properties of antibacterial nano-composite fabrics[J]. Tianjin Metallurgy, 2005 , 1:44-45(in Chinese).
[8] MANJULA G, NIRMALA M, REKHA K. Structural, optical, photo catalytic and antibacterial activity of ZnO and Co doped ZnO nanoparticles[J]. Materials Letters, 2011,(65):1797-1800. [9] BOUVYA C, MARINE W, SPORKENC R, et al. Nanosized ZnO confined inside a Faujasite X zeolite matrix:Characterization and optical properties[J]. Colloids and Surfaces A:Physicochem, 2007, 300:145-149. [10] SHEN X Y, MU D B, ChEN S, et al. Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries[J]. Applied Materials & Interfaces, 2013,(5):3118-3125. [11] COPCIA V E, GRADINARU R, MIHAI G D, et al. Antibacterial activity of nanosized ZnO hosted in microporous clinoptilolite and mesoporous silica SBA-15 matrices[J]. Revista De Chimie, 2012, 63(11):1124-1131. [12] HE G Y, DAI W,ZHAO Y T, et al. A facile synthesis of Ag@graphene-nanosheet composite with enhanced antibacterial activity and acceptable environmental safety[J]. Monatsh Chem, 2014,(145):3-10. [13] 柳劲松,李涛.石墨烯/氧化锌复合材料超级电容电化学性能研究[J].电站系统工程,2015,31(4):45-48. LIU J S, LI T. Study on electrochemical properties of graphene/zinc oxide composites[J]. Power System Engineering, 2015, 31(4):45-48(in Chinese).
[14] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191. [15] CHEN H Q, MⅡLLER M B, GILMORE K J, et al. Mechanically strong, electrically conductive, and biocompatible graphene paper[J]. Advanced Materials, 2008, 20(18):3557-3561. [16] PARK S, MOHANTY N, SUK J W, et al. Biocompatible, robust freestanding paper composed of a Tween/graphene composite[J]. Advanced Materials, 2010, 22(15):1736-1740. [17] ZHU Y W, MURALI S, CAI W W, et al. Graphene and graphene oxide:synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35):3906-3924. [18] SI Y, SAMULSKI E T.Synthesis of water soluble graphene[J]. Nano Letters, 2008, 8(6):1679-1682. [19] XU C, WANG X, ZHU J W. Graphene-metal particle nanocomposites[J]. J Phys Chem, 2008, 112(50):19841-19845. [20] Mao H H, Liu X T, Yang J H, et al. Synthesis of magnetic FexOy@silica-pillared clay(SPC) composites via a novel sol-gel route for controlled drug release and targeting[J]. Materials Science and Engineering C, 2014, 40:102-108. [21] YUAN J J, ZHU J W, BI H P, et al. Graphene-based 3D composite hydrogel by anchoring Co3O4 nanoparticles with enhanced electrochemical properties[J]. Physical Chemisrty Chemical Physics, 2013, 15:12940-12945. [22] XIAO F X. Construction of highly ordered ZnO-TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application[J]. ACS Applied Materials & Interfaces, 2012, 4:7055-7063. [23] ZHANG L L, JIANG Y H, DING Y L. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids)[J]. Journal of Nanoparticle Research, 2007, 9(18):479-489. [24] PARK S, RUOFF R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2009, 4(4):217-224. [25] KHAYATIANA S A, AHMAD K, NASSER S, et al. Preparation and characterization of Al doped ZnO NPs/graphene nanocomposites synthesized by a facile one-step solvothermal method[J]. Ceramics International, 2016, 42:110-115. [26] 王斌,张莉,郭志华,等.石墨烯/银纳米复合材料的制备及抗菌性能的研究[J].稀有金属材料与工程,2015,44(1):169-173. WANG B,ZHANG L,GUO Z H, et al. Synthesis of graphene/Ag nancomposites and their antimicrobial properties[J]. Rare Metal Materials and Engineering, 2015,44(1):169-173(in Chinese).
[27] 孙婷婷,蒋澄宇.纳米氧化铜导致小鼠急性肺损伤[J].基础医学与临床,2012,33(4):386-389. SUN T T, JIANG C Y. Copper oxide nanoparticles induce acute pulmonary injury in mice[J].Basic & Clinical Medicine, 2012,33(4):386-389(in Chinese).
[28] YAMAMOTO A, HONMA R, SUMITA M, et al. Cytotoxicity evaluation of ceramic particles of different sizes and shapes[J]. Journal of Biomedical Materials Research Part A, 2004, 68(2):244-256. [29] NEL A, XIA T, MÄDLER L, et al. toxic Potential of Materials at the Nanolevel[J]. Science, 2006, 311(5761):622-627. [30] 陈安伟,曾光明,陈桂秋,等.金属纳米材料的生物毒性效应研究进展[J].环境化学,2014,33(4):568-575. CHEN A W, ZENG G M CHEN G Q, et al. Advance in research on toxicity of metal nanomaterials[J]. Environmental Chemistry, 2014, 33(4):568-575(in Chinese).
[31] OLTEANUA D, FILIP A, SOCACIB C, et al. Cytotoxicity assessment of graphene-based nanomaterials on human dental follicle stem cells[J]. Colloids and Surfaces B:Biointerfaces, 2015, 136:791-798. -

计量
- 文章访问数: 1813
- HTML全文浏览数: 1738
- PDF下载数: 603
- 施引文献: 0