烟台近海水体不同形态铁的检测分析

林明月, 潘大为, 胡雪萍, 朱云, 韩海涛, 李菲. 烟台近海水体不同形态铁的检测分析[J]. 环境化学, 2016, 35(2): 297-304. doi: 10.7524/j.issn.0254-6108.2016.02.2015092301
引用本文: 林明月, 潘大为, 胡雪萍, 朱云, 韩海涛, 李菲. 烟台近海水体不同形态铁的检测分析[J]. 环境化学, 2016, 35(2): 297-304. doi: 10.7524/j.issn.0254-6108.2016.02.2015092301
LIN Mingyue, PAN Dawei, HU Xueping, ZHU Yun, HAN Haitao, LI Fei. Speciation analysis of iron in Yantai coastal waters[J]. Environmental Chemistry, 2016, 35(2): 297-304. doi: 10.7524/j.issn.0254-6108.2016.02.2015092301
Citation: LIN Mingyue, PAN Dawei, HU Xueping, ZHU Yun, HAN Haitao, LI Fei. Speciation analysis of iron in Yantai coastal waters[J]. Environmental Chemistry, 2016, 35(2): 297-304. doi: 10.7524/j.issn.0254-6108.2016.02.2015092301

烟台近海水体不同形态铁的检测分析

  • 基金项目:

    国家自然科学基金(41276093)资助.

Speciation analysis of iron in Yantai coastal waters

  • Fund Project: Supported by the National Natural Science Foundation of China(41276093).
  • 摘要: 本文采用2,3-二羟基萘作为三价铁的络合剂,KBrO3作为催化剂,在采样过程中加入2,2'-联吡啶掩蔽活性二价铁,用催化吸附阴极溶出法对烟台近岸海水中总活性铁、活性三价铁、活性二价铁、溶解态总铁以及有机络合态铁等5种形态铁的含量进行了分析测定,建立了一套适用于分析近岸海水中5种不同形态铁的方法.该方法测定的最低检出限为0.84 nmol·L-1,灵敏度根据所加入铁浓度不同分别为12.5、3.95、1.25 nA·L·nmol-1.此外,应用文中方法对标准海水样品CASS-5和NASS-6中的铁含量进行测试,测试结果与标准海水中铁的浓度基本符合.
  • 加载中
  • [1] GLEDHILL M, VAN DEN BERG C M G. Measurement of the redox speciation of iron in seawater by catalytic cathodic stripping voltammetry[J]. Marine Chemistry, 1995, 50(1):51-61.
    [2] SUNDA W G, HUNTSMAN S A. Iron uptake and growth limitation in oceanic and coastal phytoplankton[J]. Marine Chemistry, 1995, 50(1):189-206.
    [3] MARTIN J H, FITZWATER S. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic[J]. Nature, 1988, 331(6154):341-343.
    [4] MARTIN J H, GORDON R M, FITZWATER S. Iron in Antarctic waters[J]. Nature, 1990, 345:156-158.
    [5] ANDERSON M A, MOREL F M M. The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira Weissflogii[J]. Limnology and Oceanography, 1982, 27(5):789-813.
    [6] RICH H W, MOREL F M M. Availability of well-defined iron colloids to the marine diatom Thalassiosira weissflogii[J]. Limnology and Oceanography, 1990, 35(3):652-662.
    [7] WU J, LUTHER G W. Size-fractionated iron concentrations in the water column of the western North Atlantic Ocean[J]. Limnology and Oceanography, 1994, 39(5):1119-1129.
    [8] KUMA K, NAKABAYASHI S, SUZUKI Y, et al. Photo-reduction of Fe(Ⅲ) by dissolved organic substances and existence of Fe(Ⅱ) in seawater during spring blooms[J]. Marine Chemistry, 1992, 37(1):15-27.
    [9] 秦延文,张曼平,周革非. 海洋中铁的来源、形态和对初级生产力的限制作用[J]. 黄渤海海洋,1998,16(3):67-75.

    QIN Y W, ZHANG M P, ZHOU G F, et al. Iron sources, existing forms and their limiting action on the primary productivity of phytoplankton in seawater[J]. Journal of Oceanography of Huanghai & Bohai Seas, 1998, 16(3):67-75(in Chinese).

    [10] OBATA H, VAN DEN BERG C M G. Determination of picomolar levels of iron in seawater using catalytic cathodic stripping voltammetry[J]. Analytical Chemistry, 2001, 73(11):2522-2528.
    [11] LAGLERA L M, BATTAGLIA G, VAN DEN BERG C M G. Effect of humic substances on the iron speciation in natural waters by CLE/CSV[J]. Marine Chemistry, 2011, 127(1):134-143.
    [12] ALDRICH A P, VAN DEN BERG C M G. Determination of iron and its redox speciation in seawater using catalytic cathodic stripping voltammetry[J]. Electroanalysis, 1998, 10(6):369-373.
    [13] VAN DEN BERG C M G. Chemical speciation of iron in seawater by cathodic stripping voltammetry with dihydroxynaphthalene[J]. Analytical Chemistry, 2006, 78(1):156-163.
    [14] VAN DEN BERG C M G, NIMMO M, ABOLLINO O, et al. The determination of trace levels of iron in seawater, using adsorptive cathodic stripping voltammetry[J]. Electroanalysis, 1991, 3(6):477-484.
    [15] VAN DEN BERG C M G. Evidence for organic complexation of iron in seawater[J]. Marine Chemistry, 1995, 50(1):139-157.
    [16] CROOT P L, JOHANSSON M. Determination of iron speciation by cathodic stripping voltammetry in seawater using the competing ligand 2-(2-Thiazolylazo)-p-cresol(TAC)[J]. Electroanalysis, 2000, 12(8):565-576.
    [17] RUE E L, BRULAND K W. Complexation of iron(Ⅲ) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method[J]. Marine Chemistry, 1995, 50(1):117-138.
    [18] 杨茹君,王世荣,李景喜,等. 阴极溶出伏安法测量海水中溶解态铁[J]. 中国海洋大学学报:自然科学版,2012,42(Sup):143-149. YANG R J, WANG S R, LI J X, et al. The determination of iron in sea water by cathodic stripping voltammetry[J]. Periodical of Ocean University of China, 2012

    , 42(Sup):143-149(in Chinese).

    [19] LAGLERA L M, SANTOS-ECHEANDIA J, CAPRARA S, et al. Quantification of iron in seawater at the low picomolar range based on optimization of bromate/ammonia/dihydroxynaphtalene system by catalytic adsorptive cathodic stripping voltammetry[J]. Analytical Chemistry, 2013, 85(4):2486-2492.
    [20] 李清曼, 季国亮. 土壤中二价铁离子的伏安法测定[J]. 环境化学, 2001, 20(6):582-587.

    LI Q M, JI G L. Determination of ferrous ions in soils by differential pulse voltammetry[J]. Environmental Chemistry, 2001, 20(6):528-587(in Chinese).

    [21] POHL P, PRUSISZ B. Redox speciation of iron in waters by resin-based column chromatography[J]. Trends in Analytical Chemistry, 2006, 25(9):909-916.
    [22] HUANG Y, YUAN D, ZHU Y, et al. Real-time redox speciation of iron in estuarine and coastal surface waters[J]. Environmental Science & Technology, 2015, 49(6):3619-3627.
    [23] ADEM A, RUKIYE A, DENIZ K S, et al. A very sensitive flow-injection spectrophotometric determination method for iron(Ⅱ) and total iron using 2', 3, 4', 5, 7-pentahydroxyflavone[J]. Environmental Monitoring and Assessment, 2013, 185(3):2115-2121.
    [24] CHEN Y F, WU Y Y, WENG B, et al. Facile synthesis of nitrogen and sulfur co-doped carbon dots and application for Fe(Ⅲ) ions detection and cell imaging[J]. Sensors and Actuators B:Chemical, 2015, 223:689-696.
    [25] 耿方兰, 赵利霞. 快速灵敏检测水中Fe(Ⅲ)的化学发光传感体系研究[J]. 传感器与微系统, 2015, 34(1):57-59.

    GENG F L, ZHAO L X. Study on chemiluminescence sensing system for fast and sensitive detection of Fe(Ⅲ) in water samples[J]. Transducer and Microsystem Technologies, 2015, 34(1):57-59(in Chinese).

    [26] ZHU Y B, INAGAKI K, CHIBAa K. Determination of Fe, Cu, Ni, and Zn in seawater by ID-ICP-MS after preconcentration using a syringe-driven chelating column[J]. Journal of Analytical Atomic Spectrometry, 2009, 24:1179-1183.
  • 加载中
计量
  • 文章访问数:  1051
  • HTML全文浏览数:  949
  • PDF下载数:  1052
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-09-23
  • 刊出日期:  2016-02-15

烟台近海水体不同形态铁的检测分析

  • 1.  中国科学院烟台海岸带研究所, 中国科学院海岸带环境过程与生态修复重点实验室, 山东省海岸带环境过程重点实验室, 烟台, 264003;
  • 2.  中国科学院大学, 北京, 100049;
  • 3.  山东师范大学化学化工与材料科学学院, 济南, 250014
基金项目:

国家自然科学基金(41276093)资助.

摘要: 本文采用2,3-二羟基萘作为三价铁的络合剂,KBrO3作为催化剂,在采样过程中加入2,2'-联吡啶掩蔽活性二价铁,用催化吸附阴极溶出法对烟台近岸海水中总活性铁、活性三价铁、活性二价铁、溶解态总铁以及有机络合态铁等5种形态铁的含量进行了分析测定,建立了一套适用于分析近岸海水中5种不同形态铁的方法.该方法测定的最低检出限为0.84 nmol·L-1,灵敏度根据所加入铁浓度不同分别为12.5、3.95、1.25 nA·L·nmol-1.此外,应用文中方法对标准海水样品CASS-5和NASS-6中的铁含量进行测试,测试结果与标准海水中铁的浓度基本符合.

English Abstract

参考文献 (26)

目录

/

返回文章
返回