黑碳对沉积物中疏水性有机污染物的锁定作用与微生物降解的影响研究进展

程广焕, 孙明洋, 罗玲, 邓经友, 徐新华, 楼莉萍. 黑碳对沉积物中疏水性有机污染物的锁定作用与微生物降解的影响研究进展[J]. 环境化学, 2014, 33(12): 2058-2067. doi: 10.7524/j.issn.0254-6108.2014.12.007
引用本文: 程广焕, 孙明洋, 罗玲, 邓经友, 徐新华, 楼莉萍. 黑碳对沉积物中疏水性有机污染物的锁定作用与微生物降解的影响研究进展[J]. 环境化学, 2014, 33(12): 2058-2067. doi: 10.7524/j.issn.0254-6108.2014.12.007
CHENG Guanghuan, SUN Mingyang, LUO Ling, DENG Jingyou, XU Xinhua, LOU Liping. Locking and biodegradation effects of hydrophobic organic contaminants (HOCs) by black carbon associated with sediments[J]. Environmental Chemistry, 2014, 33(12): 2058-2067. doi: 10.7524/j.issn.0254-6108.2014.12.007
Citation: CHENG Guanghuan, SUN Mingyang, LUO Ling, DENG Jingyou, XU Xinhua, LOU Liping. Locking and biodegradation effects of hydrophobic organic contaminants (HOCs) by black carbon associated with sediments[J]. Environmental Chemistry, 2014, 33(12): 2058-2067. doi: 10.7524/j.issn.0254-6108.2014.12.007

黑碳对沉积物中疏水性有机污染物的锁定作用与微生物降解的影响研究进展

  • 基金项目:

    国家自然科学基金项目(41371447)

    杭州市社会发展科技项目(20120433B01)资助.

Locking and biodegradation effects of hydrophobic organic contaminants (HOCs) by black carbon associated with sediments

  • Fund Project:
  • 摘要: 黑碳是含碳物质不充分燃烧而产生的一种高度芳香化结构无定型碳质,是沉积物有机质中重要的组成部分.黑碳通过表面吸附或微孔束缚作用将疏水性有机污染物(HOCs)锁定在沉积物中,其超强的吸附性能导致对HOCs的解吸量减少、解吸速率减慢,进而在短期内降低其生物有效性和短期生物毒性,大量学者开展了较低HOCs浓度下短期降解实验,得出了黑碳抑制HOCs降解的结论.但长期来看,黑碳一方面会通过抑制生物有效性削弱微生物降解等HOCs的自然衰减速率,另一方面也会通过促进微生物生长提高降解率.因此推测,黑碳对HOCs微生物降解的影响可能与HOCs的类型与浓度相关,在较高HOCs浓度下,黑碳可能会通过降低急性毒性,促进微生物生长和生物膜形成来加速HOCs的降解.本文综述了黑碳对HOCs吸附/解吸和微生物降解的研究进展,从黑碳对HOCs的吸附机理和吸附模型,对解吸动力学、微生物生长以及生物有效性影响等方面进行讨论,指出了黑碳对环境中HOCs迁移转化与归趋的影响,并对黑碳的应用前景及研究趋势进行了展望.
  • 加载中
  • [1] Luthy R G, Aiken G R, Brusseau M L, et al. Sequestration of hydrophobic organic contaminants by geosorbents[J]. Environl Sci Technol, 1997,31(12): 3341-3347
    [2] Lahlou M, Ortega-calvo J J. Bioavailability of labile and desorption-resistant phenanthrene sorbed to montmorillonite clay containing humic fractions[J]. Environl Sci Technol, 1998, 18(12): 2729-2735
    [3] Goldberg E D. Black carbon in the environment: Properties and Distribution[M]. John Wiley, New York, 1985: 38-40
    [4] Forbes M S, Raison R J, Skiemstad J O. Formation,transformation and transport of black carbon (charcoa1) in terrestrial and aquatic ecosystems[J]. Sci Total Environ, 2006, 370(1): 190-206
    [5] Cornelissen G, Gustafsson O, Bucheli T D, et al. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation[J]. Environl Sci Technol, 2005, 39(18): 6881-6895
    [6] Schmidt M W I, Noack A G. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges[J]. Global Biogeochem Cycles, 2000, 14(3): 777-793
    [7] Bucheli T D, Gustaffson Ö. Quantification of the soot-water distribution coefficient of PAHs provides mechanistic basis for enhanced sorption observations[J]. Environl Sci Technol, 2000, 34(24): 5144-5151
    [8] Cochrane M A. Fire science for rainforests[J]. Nature, 2003, 421(6926): 913-919
    [9] Dichens A F,Gelinas Y, Masiello C A, et al. Reburial of fossil organic carbon in marine sediments[J]. Nature, 2004, 427(6972): 336-339
    [10] Kuhlbusch T A. Black carbon and the carbon cycle[J]. Science, 1998, 280(5371): 1903-1904
    [11] 宋建中, 于赤灵, 彭平安, 等. 珠江三角洲地区与表层沉积物有机质的性质结构研究[J]. 土壤学报, 2003, 40(3): 335-342
    [12] Goldberg E D. Black Carbon in the Environment (Environmental Science and Technology Series)[M].John Wiley&Sons lnc, 1985: 216
    [13] Kuhlbusch T A J, Crutzen P J. Black carbon, the global carbon cycle, and atmospheric carbon Dioxide[C]//Levane J S eds. Bioemass Burning and Global Change[M]. M I T Press, Cambridge M A, 1996, 1: 160-169
    [14] Choi H, Al-Abed S R. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism[J]. J Hazard Mater, 2009, 165(1/3): 860-866
    [15] Hilton H W, Yuen Q H. Soil adsorption of herbicides, adsorption of serveral pre-emergence herbicides by hawaiian sugar cane soils[J]. J Agric Food Chem, 1963, 11(3): 230-234
    [16] Yang Y, Sheng G Y. Enhanced pesticide sorption by soils containing particulate matter from crop residue burns[J]. Environl Sci Technol, 2003, 37(16): 3635-3639
    [17] Cornelissen G, Kukulsaka Z, Kalaitzidis S, et al. Relations between environmental black carbon sorption and geochemical sorbent characteristics[J]. Environl Sci Technol, 2004, 38(13): 3632-3640
    [18] Prevedouros K, Anna P C, Gustafsson Ö, et al. Development of a black carbon-inclusive multi-media model: Application for PAHs in Stockholm[J]. Chemosphere, 2008, 70(4): 607-615
    [19] Chun Y, Sheng G G, Chiou C T, et al. Compositions and sorptive properties of crop residue-derived[J]. Environl Sci Technol, 2004, 38(17):4649-4655
    [20] van Noort P C M, Jonker M T O, Koelmans A A. Modeling maximum adsorption capacities of soot and soot-like materials for PAHs and PCBs[J]. Environ Sci Technol, 2004, 38(12): 3305-3309
    [21] Cornelissen G, Elmquist M, Groth I, et al. Effect of sorbate planarity on environmental black carbon sorption[J]. Environ Sci Technol, 2004, 38(13): 3574-3580
    [22] Cornelissen G, Haftka J, Parsons J, et al. Sorption to black carbon of organic compounds with varying polarity and planarity[J]. Environ Sci Technol, 2005, 39(10): 3688-3694
    [23] Jonker M T O, Koelmans A A. Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment: Mechanistic considerations[J]. Environ Sci Technol, 2002, 36 (17): 3725-3734
    [24] Bärring H, Bueheli T D, Broman D, et al. Soot-water distribution coefficients for polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polybrominated diphenylethers determined with the soot cosolvency-column method[J].Chemosphere, 2002, 49(6): 515-523
    [25] Ghosh U, Gillette J S, Luthy R G, et al. Microscale location, characterization, and associations of polycyclic aromatic hydrocarbons on harbor sediment particles[J]. Environ Sci Technol, 2000, 34(9): 1729-1736
    [26] Obst M, Grathwohl P, Kappler A, et al. Quantitative high-resolution mapping of phenanthrene sorption to black carbon particles[J]. Environ Sci Technol, 2011, 45(17): 7314-7322
    [27] Cornelissen G, Gustafsson Ö. Importance of unburned coal carbon, black carbon, and amorphous organic carbon to phenanthrene sorption in sediments[J]. Environ Sci Technol, 2005, 39(3): 764-769
    [28] Chen Z M, Chen B L, Zhou D D, et al. Bisolute sorption and thermodynamic behavior of organic pollutants to biomass-derived biochars at two pyrolytic temperatures[J]. Environ Sci Technol, 2012, 46(22): 12476-12483
    [29] Kleineidam S, Schuth C, Grathwohl P. Solubility-normalized combined adsorption-partitioning sorption isotherms for organic pollutants[J]. Environ Sci Technol, 2002, 36(21): 4689-4697
    [30] Ji L L, Wan Y Q, Zheng S R, et al. Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: Implication for the relative importance of black carbon to soil sorption[J]. Environ Sci Technol, 2011, 45(13): 5580-5586
    [31] Lohmann R, Macfarlane J K, Gschwend P M. On the importance of black carbon to sorption of PAHs, PCBs and PCDDs in Boston and New York Harbor sediments[J]. Environ Sci Technol, 2005, 39(1): 141-148
    [32] Qiu Y P, Cheng H Y, Xu C, et al. Surface characteristics of crop-residue-derived black carbon and lead (Ⅱ) adsorption[J]. Water Res, 2008, 42(3): 567-574
    [33] Zhang J H, He M C. Predicted models for phenanthrene sorption nonlinearity and capacity based on different HA/BC ratios in sediments[J]. J Colloid Interf Sci, 2009, 337(2): 338-344
    [34] Yu X Y, Ying G G, Rai S K. Sorption and desorption behaviors of diuron in soils amended with charcoal[J]. J Agric Food Chem, 2006, 54(22): 8545-8550
    [35] Limousin G, Gaudet J P, Charlet L, et al. Sorption isotherms: A review on physical bases, modeling and measurement[J]. Appl Geochem, 2007, 22(2): 249-275
    [36] Li L, Quinlivan P A, Knappe N U. Predicting adsorption isotherms for aqueous organic micropollutants from activated carbon and pollutant properties[J]. Environ Sci Technol, 2005, 39(9): 3393-3400
    [37] Weber J R, Mcginley P M, Katz L E. A distributed reactivity model for sorption by soils and sediments. 1. Conceptual basis and equilibrium assessments[J]. Environ Sci Technol, 1992, 26(10): 1955-1962
    [38] Kan A T, Fu G, Tomson M B. Adsorption/desorption hysteresis in organic pollutant and soil/sediment interaction[J]. Environ Sci Technol, 1994, 28(5): 859-867
    [39] Chen W, Kan A T, Tomson M B. Irreversible adsorption of chlorinated benzenes to natural sediments: Implication for sediment quality criteria[J]. Environ Sci Technol, 2000, 34(3): 385-392
    [40] Water J, Weber Jr, Huang W L, et al. Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments 2. Effects of soil organic matter heterogeneity[J]. J Contam Hydrol, 1998, 31: 149-165
    [41] Sander M, Pignatello J J. An isotope exchange technique to assess mechanisms of sorption hysteresis applied to naphthalene in kerogenous organic matter[J]. Environ Sci Technol, 2005, 39: 7476-7484
    [42] Lu Y, Pignatello J J. Demonstration of the "Conditioning Effect" in soil organic matter in support of a pore deformation mechanism foe sorption hysteresis[J].Environ Sci Technol, 2002, 36: 4553-4561
    [43] Nguyen T H, Cho H H, Poster D L, et al. Evidence for a pore-filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char[J]. Environ Sci Technol, 2007, 41: 1212-1217
    [44] Huang W L, Yu H, Water J, et al. Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments 1. A comparative analysis of experimental protocols[J]. J Contam Hydrol, 1998, 31: 129-148
    [45] Cornelissen G, vanNoort P C M, Govers H A J. Desorption kinetics of chlorobenzenes, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls: sediment extraction with tenaxt and effects of contact time and solute hydrophobicity[J]. Environ Toxicol Chem, 1997, 16(7): 1351-1357
    [46] 龙庆云, 张洪彬, 韦桂欢. Tenax TA对甲苯吸附脱附性能的研究[J]. 舰船科学技术, 2009, 31(1): 120-123
    [47] 徐东群, 刘晨明, 张爱军, 等. Tenax TA吸附/二次热解吸/毛细管气相色谱法测定环境空气中苯系物的方法[J].卫生研究, 2004, 33(4): 425-427
    [48] Pignatello J J. Slowly reversible sorption of aliphatic halocarbons in soils. I. Formation of residual fractions[J]. Environ Toxicol Chem, 1990, 9(9): 1107-1115
    [49] You J, Pehkonen S, Landrum P F, et al. Desorption of hydrophobic compounds from laboratory-spiked sediments measured by Tenax absorbent and matrix solid-phase microextraction[J]. Environ Sci Technol, 2007, 41(16): 5672-5678
    [50] Cornelissen G, Van noort P C M, Parsons J R, et al. Temperature dependence of slow adsorption and desorption kinetics of organic compounds in sediments[J]. Environ Sci Technol, 1997b, 31(2): 454-460
    [51] Van noort P C M, Cornelissen G, ten hulscher T E M, et al. Slow and very slow desorption of organic compounds from sediment: Influence of sorbate planarity[J]. Water Res, 2003, 37(10): 2317-2322
    [52] Xia G, Ball W P. Adsorption-partitioning uptake of nine low polarity organic chemicals on a natural sorbent[J]. Environ Sci Technol, 1999, 33: 262-269
    [53] Cornelissen G, Rigterink H, Van Noort P C M, et al. Slowly and very slowly desorbing organic compounds in sediments exhibit Langmuir-type sorption[J]. Environ Toxicol Chem, 2000, 19: 1532-1539
    [54] Lou L P, Cheng G H, Deng J Y, et al. Mechanism of and relation between the sorption and desorption of nonylphenol on black carbon-inclusive sediment[J]. Environ Pollu, 2014, 190: 101-108
    [55] Chai Y Z, Qiu X J, Davis J W, et al. Effects of black carbon and montmorillonite clay on multiphasic hexachlorobenzene desorption from sediments[J]. Chemosphere, 2007, 69(8):1204-1212
    [56] Ghosh U, Talley J W, Luthy R G. Particle-scale investigation of PAH desorption kinetics and thermodynamics from sediment[J]. Environ Sci Technol, 2001, 35(17): 3468-3475
    [57] Cornelissen G, Rigterink H, ten Hulscher T E M, et al. Two-stage desorption kinetics and in situ partitioning of hexachlorobenzene and dichlorobenzenes in a contaminated sediment[J].Chemosphere, 1997, 35(10): 2405-2416
    [58] Hilber I, Bucheli T D, Wyss G S, et al. Assessing the phytoavailability of dieldrin residues in charcoal-amended soil using tenax extraction[J]. J Agric Food Chem, 2009, 57(10): 4293-4298
    [59] Cheng G H, Zhu L C H, Sun M Y, et al. Desorption and distribution of pentachlorophenol (PCP) on aged black carbon-inclusive sediment[J]. J Soil Sediment, 2014, 14: 344-352
    [60] Johnson M D, Keinath T M, Weber W J. A distributed reactivity model for sorption by soils and sediments. 14. Characterization and modeling of phenanthrene desorption rates[J]. Environ Sci Technol, 2001, 35 (8): 1688-1695
    [61] Li J, Sun H, Zhang Y. Desorption of pyrene from freshly-amended and aged soils and its relationship to bioaccumulation in earthworms[J].Soil Sediment Contam, 2007, 16(1): 79-87
    [62] Comelissen G, Breedveld G D,Naes K,et al. Bioaccumulation of native polycyclic aromatic hydrocarbons from sediment by a polychaete and a gastropod: Freely dissolved concentrations and activated carbon amendment[J]. Environ Toxicol Chem, 2006, 25: 2349-2355
    [63] Zimmerman J R, Ghosh U, Millward R N, et al. Addition of carbon sorbents to reduce PCB and PAH bioavailability in marine sediments: Physicochemical tests[J]. Environ Sci Technol, 2004, 31: 203-209
    [64] Meador J P, Adams N G, Casillas E, et al. Comparative bioaccumulation of chlorinated hydrocarbons from sediment by two infaunal invertebrates[J]. Arch Environ Contam Toxicol, 1997, 33: 388-400
    [65] Rust A J, Burgess R M, Mcelroy A E. Influence of soot carbon on the bioaccumulation of sediment-bound polycyclic aromatic hydrocarbons by marine benthic invertebrates: An interspecies comparison[J]. Environ Toxicol Chem, 2004, 23(11): 2594-2603
    [66] Chai Y Z, Currie, R J, Davis, J W, et al. Effectiveness of activated carbon and biochar in reducing the availability of polychlorinated dibenzo- p -dioxins/dibenzofurans in soils[J]. Environ Sci Technol, 2012, 46: 1035-1043
    [67] Shen M H, Xia X H, Zhai Y W, et al. Influence of carbon nanotubes with preloaded and coexisting dissolved organic matter on the bioaccumulation of polycyclic aromatic hydrocarbons to chironomus plumosus larvae in sediment[J]. Environ Toxicol Chem, 2014, 33(1): 182-189
    [68] Mcleod P B, Van den Heuvel-Greve M J, Allen-King R M, et al. Effects of particulate carbonaceous matter on the bioavailability of benzo[a]pyrene and,2',5,5'-tetrachlorobiphenyl to the clam, Macomabalthic[J]. Environ Sci Technol, 2004, 38:4549-4556
    [69] Bradley P M, Barber L B, Kolpin D W, et al. Potential for 4-n-nonylphenol biodegradation in stream sediments[J]. Environ Toxicol Chem, 2008, 27: 260-265
    [70] Düring R A, Krahe S, Gäth S. Sorption behavior of nonylphenol in terrestrial soils[J]. Environ Sci Technol, 2002, 36: 4052-4057
    [71] Zhang P, Sheng G Y, Feng Y C, et al. Role of wheat-residue-derived char in the biodegradation of benzonitrile in soil: Nutritional stimulation versus adsorptive inhibition[J]. Environ Sci Technol, 2005, 39: 5442-5448
    [72] Lehmann J, Rillig M C, Thies J, et al. Biochar effects on soil biotae -A review[J]. Soil Biol Biochem, 2011, 43: 1812-1836
    [73] Meynet P, Hale S E, Davenport R J. Effect of activated carbon amendment on bacterial community structure and functions in a PAH impacted urban soil[J]. Environ Sci Technol, 2012, 46: 5057-5066
    [74] Jin H. Characterization of microbial life colonizing biochar and biochar-amended soils[D]. Cornell University, Ithaca, NY, 2010
    [75] Lin Y H, Lin W F, Jhang K N, et al. Adsorption with biodegradation for decolorization of reactive black 5 by Funalia trogii 200800 on a fly ash-chitosan medium in a fluidized bed bioreactor-kinetic model and reactor performance[J]. Biodegr, 2013, 24: 137-152
    [76] Rhodes A H, Carlin A, Semple K T. Impact of black carbon in the extraction and mineralization of phenanthrene in soil[J]. Environ Sci Technol, 2008, 42: 740-745
    [77] Ehrhardt H M, Rehm H J. Phenol degradation by microorganisms adsorbed on activated carbon[J]. Appl Microbiol Biot, 1985, 21: 32-36
    [78] Cornelissen G, Rigterink H, Ferdinandy M M A, et al. Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation[J]. Environ Sci Technol, 1998, 32: 966-970
    [79] 杨基峰, 应光国, 赵建亮, 等. 黑碳对污染物环境地球化学过程的影响[J]. 生态环境, 2008,17: 1685-1689
    [80] Leglize P, Saada A, Berthelin J, et al. Adsorption of phenanthrene on activated carbon increases mineralization rate by specific bacteria[J]. J Hazard Mater, 2008, 151: 339-347
    [81] Cui X Y, Hunter W, Yang Y, et al. Biodegradation of pyrene in sand, silt and clay fractions of sediment[J]. Biodegr, 2011, 22: 297-307
    [82] Marchal G, Smith K E C, Rein A, et al. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost[J]. Chemosphere, 2013, 90: 1767-1778
    [83] Das P, Mukherjee S, Sen R. Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin[J]. Chemosphere, 2008, 72: 1229-1234
    [84] Zhang P, Sheng G Y, Wolf D C, et al. Reduced biodegradation of benzonitrile in soil containing wheat-residue-derived ash[J]. J Environ Qual, 2004, 33: 868-872
    [85] Bushnaf K M, Puricelli S, Saponaro S, et al. Effect of biochar on the fate of volatile petroleum hydrocarbons in an aerobic sandy soil[J]. J Contam Hydrol, 2011, 126: 208-215
    [86] Vasilyeva G K, Kreslavski V D, Oh B T, et al. Potential of activated carbon to decrease 2,4,6-trinitritoluene toxicity and accelerate soil decontamination[J]. Environ Toxicol Chem, 2001, 20: 965-971
    [87] Vasilyeva G K, Strijakova E R, Shea P J. Use of activated carbon for soil bioremediation[J]. Soil Water Pollu Monit Prote Remed, 2006, 3-23: 309-322
  • 加载中
计量
  • 文章访问数:  1426
  • HTML全文浏览数:  1278
  • PDF下载数:  970
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-02-28
程广焕, 孙明洋, 罗玲, 邓经友, 徐新华, 楼莉萍. 黑碳对沉积物中疏水性有机污染物的锁定作用与微生物降解的影响研究进展[J]. 环境化学, 2014, 33(12): 2058-2067. doi: 10.7524/j.issn.0254-6108.2014.12.007
引用本文: 程广焕, 孙明洋, 罗玲, 邓经友, 徐新华, 楼莉萍. 黑碳对沉积物中疏水性有机污染物的锁定作用与微生物降解的影响研究进展[J]. 环境化学, 2014, 33(12): 2058-2067. doi: 10.7524/j.issn.0254-6108.2014.12.007
CHENG Guanghuan, SUN Mingyang, LUO Ling, DENG Jingyou, XU Xinhua, LOU Liping. Locking and biodegradation effects of hydrophobic organic contaminants (HOCs) by black carbon associated with sediments[J]. Environmental Chemistry, 2014, 33(12): 2058-2067. doi: 10.7524/j.issn.0254-6108.2014.12.007
Citation: CHENG Guanghuan, SUN Mingyang, LUO Ling, DENG Jingyou, XU Xinhua, LOU Liping. Locking and biodegradation effects of hydrophobic organic contaminants (HOCs) by black carbon associated with sediments[J]. Environmental Chemistry, 2014, 33(12): 2058-2067. doi: 10.7524/j.issn.0254-6108.2014.12.007

黑碳对沉积物中疏水性有机污染物的锁定作用与微生物降解的影响研究进展

  • 1.  浙江大学环境与资源学院, 杭州, 310029;
  • 2.  香港大学生物科学系, 中国香港特别行政区
基金项目:

国家自然科学基金项目(41371447)

杭州市社会发展科技项目(20120433B01)资助.

摘要: 黑碳是含碳物质不充分燃烧而产生的一种高度芳香化结构无定型碳质,是沉积物有机质中重要的组成部分.黑碳通过表面吸附或微孔束缚作用将疏水性有机污染物(HOCs)锁定在沉积物中,其超强的吸附性能导致对HOCs的解吸量减少、解吸速率减慢,进而在短期内降低其生物有效性和短期生物毒性,大量学者开展了较低HOCs浓度下短期降解实验,得出了黑碳抑制HOCs降解的结论.但长期来看,黑碳一方面会通过抑制生物有效性削弱微生物降解等HOCs的自然衰减速率,另一方面也会通过促进微生物生长提高降解率.因此推测,黑碳对HOCs微生物降解的影响可能与HOCs的类型与浓度相关,在较高HOCs浓度下,黑碳可能会通过降低急性毒性,促进微生物生长和生物膜形成来加速HOCs的降解.本文综述了黑碳对HOCs吸附/解吸和微生物降解的研究进展,从黑碳对HOCs的吸附机理和吸附模型,对解吸动力学、微生物生长以及生物有效性影响等方面进行讨论,指出了黑碳对环境中HOCs迁移转化与归趋的影响,并对黑碳的应用前景及研究趋势进行了展望.

English Abstract

参考文献 (87)

返回顶部

目录

/

返回文章
返回